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Executive Summary _ _- -

Introduction

With the downturn of the world economy, the priority of unmanned

exploration of the solar system has been lowered. Instead of foregoing all

missions to our neighbors in the solar system, a new philosophy of exploration

mission design has evolved to insure the continued exploration of the solar

system. The "Discovery-class" design philosophy uses a low cost, limited

mission, available technology spacecraft instead of the previous "Voyager-class"

design philosophy that uses a "do-everything at any cost" spacecraft. The

"Voyager-class" philosophy is no longer feasible. The Percival Mission to Mars

has been proposed by Ares Industries as one of the new "Discovery-class" of

exploration missions. The spacecraft will be christened Percival in honor of

American astronomer Percival Lowell who proposed the existence of life on Mars

in the early twentieth century.

The main purpose of the Percival mission to Mars is to collect and relay

scientific data to Earth suitable for designing future manned and unmanned

missions to Mars. The measurements and observations made by Percival will

help future mission designers to choose among landing sites based on the

feasibility and scientific interest of the sites. The primary measurements

conducted by the Percival mission include gravity field determination, surface and

atmospheric composition, sub-surface soil composition, sub-surface seismic

activity, surface weather patterns, and surface imaging. These measurements

will be taken from the orbiting Percival spacecraft and from surface penetrators

deployed from Mars orbit.

Percival has been designed as a follow-up mission to the Mars Observer

(MO) spacecraft that is currently in route to Mars. As a follow-up mission, it will

augment the Mars Observer mission by improving the gravity field map created

by MO and by supporting the Visual and Infrared Mapping Spectrometer (VIMS),

which was originally planned for the Mars Observer mission. In addition, images

and data taken by MO will be used to determine the desired impact sites for the

three surface penetrators included within the Percival mission. __

As a secondary mission, Percival will support the Mars Balloon Relay

(MBR) communications system, similar to the one used on Mars Observer. This

system is a separate communications package directed towards the surface of

Mars to receive and transmit data from surface landers. During the science



phase of the Percival mission, this system will be used for data relay between the

surface penetrators and Earth. After the completion of the science phase of the

mission, the MBR will be used to support future Mars landers.

The Percival mission scenario consists of the following elements:

• Launch using modified Delta-class launcher.

• Use a broken-plane Hohmann transfer trajectory between Earth

and Mars.

• Insert into a low altitude, circular, sun-synchronous Mars orbit.

• Determine gravity field using gravity gradiometer and Doppler-

shift measurements as a backup.

• Release each penetrator individually from Percival in Mars orbit.

• Use the Mars Balloon Relay communications system for data

relay from surface penetrators and future surface missions.

• Support both real-time and store-and-forward data transmission

to Earth.

• Conduct scientific measurements for approximately 1-2 Martian

years.

The design work for the Percival Mission to Mars has been divided among

four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity

and Science Instruments, and Spacecraft Structure and Systems. This overview

summarizes the results for each of the technical areas followed by a design cost

analysis and recommendations for future analyses.

Orbits and Propulsion System

The main objective of the orbits and propulsion group was to develop the

best combination of launch system and transfer trajectory that would maximize

the allowable mass in Martian orbit. The design of the final Mars orbit was

designed to accommodate the gradiometer, the VIMS, and the relay

communications packages. The spacecraft propulsion system was designed to

provide transfer trajectory corrections, Mars orbit insertion, and end-of-mission

boost burns.

The choice of launch system and the design of the transfer trajectory was

heavily impacted by the low cost objective of the Percival mission and the Delta-

class launch vehicle constraint stated in the Request For Proposal. The Delta
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launch system is one of the less expensive launch systems, but it is also one of

the lower performance vehicles among those capable of supporting an

interplanetary payload. To maximize the amount of mass that can be placed into

a Martian transfer trajectory, a Delta 7925 with an additional upper stage motor

has been chosen. The first two stages of the Delta will place the boost stages

and the spacecraft into Earth orbit, while the two Star-48B motors will provide the

thrust for the Mars transfer injection burn.

To compromise between minimal energy transfer and time of flight, a

broken-plane Hohmann transfer, shown in Figure 2.3, was chosen. This

trajectory requires a 3576 m/s zlV, provided by the Star 48B's, for transfer

insertion. The plane change burn is performed at a true anomaly of 90 °,

requiring a 258 m/s ztV to change the orbital plane by 0.53 °. Course corrections

will also be made during this burn. The Mars insertion burn will require a 2178

m/s ,_V by the spacecraft propulsion system. The time of flight will be

approximately 11 months. _

The design of the final Mars orbit was driven by the instrument packages

onboard Percival. To increase the accuracy and precision of the gradiometer

data, a low-altitude (179.4 km), circular orbit was chosen. To increase the

groundtrack coverage of Mars, a high inclination orbit was necessary. A sun-

synchronous orbit was chosen for this reason as well as to reduce thermal

variations on the spacecraft. The sun-synchronous orbit also minimizes the

pointing requirements of the high-gain antenna used to communicate with Earth.

The period of the Martian orbit will be 108 minutes. The groundtrack for this orbit

allows for communication with each penetrator every two to three days and

allows for a complete VIMS mapping cycle in 82 days.

Percival's propulsion system is designed to provide the plane change

burn, course corrections, Mars orbit insertion, and end-of-mission orbit boost.

These maneuvers will require a _V of 2436 m/s. The resulting propulsion system

will have approximately 60 kg of hardware mass and 730 kg of propellant mass.

Surface Penetrators

The surface penetrators group was tasked to design the penetrator

system, which includes deployment methods, deceleration methods, impact and

stress analysis, structural design, subsystem design, and scientific

instrumentation of the penetrators. The purpose of the penetrator system is to

provide scientific data from the surface and sub-surface of Mars as an aid to

==.
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designing future manned and unmanned missions. The data returned by the

penetrators will help determine the feasibility of a landing site and the scientific

interest of a site.

Each of the three penetrators will be deployed separately from Martian

orbit and impact at a different location on the Martian surface. The deployment

and deceleration system uses a spring for the initial separation from Percival, a

500 m/s AV deorbit motor for entry, and a 1.14 m diameter drag chute for

deceleration and stability through the atmosphere. The transfer from Mars orbit

to impact takes approximately 4.5 minutes and results in a 235 m/s impact

velocity.

Upon impact the forebody and afterbody of the penetrator separate as

shown in Figure 3.1. The umbilical cord connecting the two sections of the

penetrator contains power and communications lines. Both hard and soft soil

models were used to analyze the impact. The forebody must penetrate deep

enough to isolate the seismic instruments from surface wind disturbances, but

must not separate from the afterbody farther than the umbilical cord will allow.

The penetration of the afterbody must be minimized so that the communications

and surface instruments will remain on the surface. The results of the

penetration analysis are summarized in Table 3.2.

Each penetrator contains instrumentation that will carry out four scientific

objectives: planetary science, imaging, soil analysis, and meteorology.

Planetary science is the determination of the interior structure of Mars. This

involves the study of the surface structure, global seismology, and the magnetic

field of the planet using a seismometer and a magnetometer. Imaging systems

on the penetrators will provide information on the geology of the Martian surface.

Two imaging systems will be on each penetrator: a descent imager located on

the nose of the penetrator and a panoramic imaging system located in the top of

the afterbody. Soil analysis is the study of the chemical composition, water

content, and physical properties of the subsurface soil. The physical properties

of the soil include the subsurface temperature and conductivity. A meteorology

package containing four distinct instruments will measure the temperature,

pressure, humidity, and wind speed and direction of the local atmosphere.

The necessary subsystems for each penetrator are power,

communications, and thermal control. The power subsystem is composed of a

0.5 W Radioisotope Thermoelectric Generator (RTG) and a 20 W Nickel-

hydrogen battery. The RTG handles all continuous power requirements and
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recharges the battery. The battery will provide for peak power requirements,

such as transmission of data to Percival. This type of power system provides for

a penetrator with an operating life of one year. The communications system uses

a helix antenna on the penetrator afterbody for receiving and transmitting data.

The thermal system uses thermal blankets and excess heat from the RTG to

keep the battery in the proper temperature range. The remainder of the excess

heat is transferred to the soil using a heat pipe. Figure 3.3 shows a layout of the

penetrator subsystems and instrumentation. Table 3.6 shows a breakdown of

the mass and power requirements of the penetrator.

Gravity and Science Instruments

Two of the main objectives of the Percival mission are to augment and

improve the gravity field mapping being done by MO and to serve as a support

platform for scientific instrumentation that was originally planned for MO. The

gravity and science instruments group chose the instruments to accomplish these

objectives and developed the constraints that the instruments placed on the

Percival spacecraft.

Mars Observer will be using radioscience techniques (Doppler shift

measurements) to carry out gravity mapping of Mars. Percival will improve upon

the accuracy of the MO gravity map by using a two-axis gravity gradiometer,

sensitive in the radial and transverse directions. This instrument uses highly

sensitive accelerometers to measure the local gravity field. It is expected that an

accuracy of 1 Eotvos will be obtained by using the gradiometer without cryogenic

cooling. Since gradiometers have never been used in space, Percival will also

have the capability to support radioscience techniques. Doppler shift

measurements will still augment the gravity map created by MO, though the

accuracy of the map will not be improved.

To achieve the desired accuracy and sensitivity of the gravity field map,

mechanical vibrations and accelerations generated by the spacecraft must be

eliminated or minimized. The gradiometer also requires that attitude position and

rates be known very precisely. Table 4.1 summarizes the requirements placed

on the GN&C system. While attitude maneuvers are being conducted, the

gradiometer will not make gravity field measurements.

The Visual and Infrared Mapping Spectrometer (VIMS) will also be flown

on Percival. This instrument, originally designed for MO, will determine the
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composition of the Martian atmosphere and surface. The VIMS mapping mission

requires the Percival spacecraft to maintain a nadir orientation. This type of

orientation requires the spacecraft to maintain a constant revolution rate of one

revolution per orbit. This rotation rate is not high enough to significantly affect the

gradiometer measurements. A more sensitive, cryogenically-cooled gradiometer

would need to take the rotational acceleration terms into account. With an orbital

altitude of 179.4 km, one VIMS mapping cycle of Mars will take 82 days.

Spacecraft Structure and Subsystems

The Spacecraft group was responsible for designing the basic structure

and the subsystems of the Percival spacecraft. To eliminate the need for a

complete redesign of the spacecraft bus, the Percival spacecraft bus was based

on a scaled down version of the Planetary Observer bus used for the MO

mission. Systems design was done for the communications, power, thermal, and

GN&C subsystems. A schematic of the spacecraft is shown in Figure 5.1. A

summary of the mass and power requirements of each spacecraft system is

shown in Table 5.1.

The communications system consists of a high-gain antenna and a

backup low-gain antenna for communication with Earth. The high-gain antenna

will transmit at a frequency of 8.4 GHz with a data rate of 150 kbps. Since

Percival will not be able to transmit at all times, the capability to store data in

addition to real-time transmission will be used. Ares Industries expects that

Percival will receive an allocation of Deep Space Network (DSN) time roughly

equivalent to the 8 hours per day that ME) receives currently. During the 8 hour

period, Percival would be able to transmit approximately 1622 megabits of data.

For communications with the surface of Mars, Percival will use the Mars

Balloon Relay (MBR) communications system currently used on ME). This

system consists of a low-gain antenna pointed towards the surface of Mars. The

antenna will transmit at 401 MHz and receive at 406 MHz with a data rate of 8

kbs. This communications system will support the surface penetrators during the

science phase of the Percival mission. Beyond the science phase, the MBR

system will support other future surface missions.

An RTG and battery combination was chosen to provide power for the

Percival spacecraft. The RTG was chosen for its good mass to power rating (5.4

W/kg) and for its ability to generate power without repointing as solar panels are

required to do. The battery would be used to provide power during peak power
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consumption phases of the mission. Today's RTGs use Plutonium 238 as the

radioactive isotope. This isotope is not commonly available, making the RTG

very expensive. A less expensive alternative would be to make RTGs that utilize

a more readily available isotope, such as Strontium 90. This isotope is a

common daughter isotope in all nuclear reactors. In the past, Strontium 90 has

been used for SNAP reactors on spacecraft.

The thermal control methods will be based primarily on passive methods

to reduce the mechanical noise produced by the system. Passive methods of

thermal control will include thermal blankets and surface coatings. The active

thermal control methods used will include freon radiators and heaters.

The Guidance, Navigation, and Control system consists of sensors and

thrusters to determine and control the spacecraft's position, velocity, and attitude.

The GN&C system is designed to be completely autonomous with the capability

of ground override. Attitude and position determination will be done using a sun

sensor and a fixed-head star tracker. Rate determination will be done using a

ring laser gyro. The control system will use 24 reaction control jets divided

among two independent systems. One system will use hot gas, while the other

will use cold gas. The cold gas thrusters will allow the spacecraft to be controlled

more precisely than the hot gas thrusters will allow.

Recommendations

As designed, the Percival spacecraft is not capable of supporting all

mission objectives. The constraint of the Delta launch vehicle has limited the

allowable mass of the spacecraft to 460 kg dry mass at Mars. This is 75 kg

higher than the mass estimate for Percival of 535 kg. To come within the mass

budget, one or more mission objectives may have to be eliminated or a higher

performance launch vehicle must be used. It may also be possible to take

advantage of larger GEMs (Graphite-Epoxy Motors) to provide the additional

boost, if they become available in the future.

A preliminary estimate of the development and production cost for the

Percival mission has shown that, as designed, Percival exceeds the desired

"Discovery-class" budget of $150 million. The current estimate of $270 million

includes the development, production, and launch costs for the Percival mission.

The cost estimate does not include program costs, operation costs, or other long

term management costs. Ares Industries has concluded that the numerous

mission objectives of the Percival mission make it unsuitable for a true Discovery-
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class mission. If a Discovery-class mission is required, one of the three major

scientific objectives, gradiometer, penetrator, or the VlMS, should be chosen as

the single, primary mission objective.

To design the Percival Mission to Mars beyond the preliminary design

phase, detailed design must be done for all portions of the project. The following

issues must also be considered. For the propulsion system, the type of

propellant must be chosen to give a more precise estimate of the fuel mass

required. The penetrator system requires the accuracy of the penetrator

targeting to be determined in addition to the effects of winds on the entry

trajectory and attitude of the penetrator. Also, the susceptibility of the penetrator

structure to failure during an oblique impact must also be considered. The

feasibility of increasing the data rate of the Mars Balloon Relay should be

determined. For the spacecraft power system, the feasibility of using a Strontium

90 RTG should be further analyzed. The GN&C system of Percival should be

analyzed in more detail to determine if it satisfies the position and rate

determination and control requirements defined by the gradiometer.
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1.0 Overview

This report describes the design work done by Ares Industries to complete

the preliminary design of the Percival spacecraft. This design was done in

response to the Request for Proposal (RFP) for an unmanned Martian gravity

mapper.

1.1 Mission Objectives

The following mission objectives, taken from the RFP, were the basis of

the Percival mission design:

• To augment and improve the Martian gravity field determination

being carried out by Mars Observer.

• To deploy a set of instrumented penetrators in selected regions

of Mars as a precursor to future manned and unmanned Mars

missions.

• To relay penetrator and gravity field data back to Earth

• To provide a platform for scientific instrumentation cut from the

Mars Observer mission due to funding cutbacks.

• Low cost, available technology design.

The last mission objective was not explicitly stated in the RFP, but was implied

through the specification of a Delta class launcher.

1.2 Mission Scenario

The above objectives are met by the current mission scenario, listed

below.

• Launch using modified Delta-class launcher.

• Use a broken-plane Hohmann transfer trajectory between Earth

and Mars.

• Insert into a low altitude, circular, sun-synchronous Mars orbit.

• Determine Mars gravity field using gravity gradiometer and

Doppler- shift measurements as a backup.

• Release each penetrator individually from Percival in Mars orbit.



• Use the "Mars Balloon Relay" communications system for data

relay from surface penetrators and future surface missions.

• Support both real-time and store-and-forward data transmission

to Earth.

• Conduct scientific measurements for approximately 1-2 Martian

years.

1.3 Design Drivers

The design of the Percival spacecraft was driven by the specification of

the Delta-class launcher for the mission and the "Discovery-class" design

philosophy (1). The Delta-class launcher necessitates a low mass due to the

limited performance launchers. The "Discovery-class" design philosophy

specifies a low-cost, limited objective, and available technology design. This

design philosophy has developed in response to the limited funding that is now

available to exploration spacecraft. Instead of foregoing all space exploration

missions, "Discovery-class" missions may be used to continue the unmanned

exploration of the solar system.

1.4 Report Overview

The technical work done by Ares Industries has been divided among four

technical areas: Orbits and Propulsion System Design, Surface Penetrator

Design, Gravity Field Mapping and Science Instruments, and Spacecraft and

Subsystems Design. The remainder of this report consists of descriptions of the

technical work done by each element, a brief section on management and project

costs, and the conclusions and recommendations of the Percival design study.
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2.0 Orbits and Propulsion System Design

The primary considerations for selecting an orbital trajectory and

propulsion system are the following:

• Design must accommodate the mass of the entire spacecraft

• Trajectories must minimize the total AV required in order to maximize the

available mass

• Mission scenario should result in a Mars orbit that best enables Percival to

carry out its objectives

The basic mission scenario as outlined in the request for proposal (RFP)

consists of a near-Hohmann trajectory to Mars initiated by a Delta class launcher.

The near-Hohmann transfer enables a larger mass to be placed in orbit than

most other trajectories. Ares Industries looked into two other types of

trajectories: Lambert targeting trajectories and gravity assist trajectories. The

Delta class launcher was specified in the RFP because of its low cost. The RFP

further specified a final Mars orbit that would trail Mars Observer or be in a high-

low configuration with it. However, after consideration of the projected lifetime of

Mars Observer and the operational independence inherent in the spacecraft

instruments onboard Percival, Ares Industries has decided that this constraint is

unnecessary, and will establish an independent orbit.

The considerations affecting the choice for the final Mars orbit are outlined

below:

• Low altitude, for sensitivity of measurements

• Near circular, for uniformity of measurements

• Sun-synchronous, for minimizing thermal variations

The Percival spacecraft will use a chemical propulsion system. This

system will be used to provide the thrust for the plane change at the broken plane

maneuver and for the Mars Orbit Insertion burn.
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2.1 Launch Vehicle

The Delta 7925 with an additional Star 48B upper stage has been selected

as Percival's launch vehicle. The 7925 and its various configurations are the only

commercial Delta launch vehicles in_production (2). The addition of a second

upper stage allows a greater spacecraft mass to be placed into orbit than does a

single upper stage; however, the highest allowable spacecraft mass, 1187

kilograms, is achieved when the second Star 48B has only 1587 kg of fuel loaded

on it, about three-fourths of its standard amount. Fuel offloading for the Star

series of motors is a routine process and should pose no problem (3). The

Delta's full launching power was used in creating this configuration, so the two

upper stage/spacecraft combination are placed into a low, 185 km circular orbit

about the Earth, into which the Delta can lift the most payload mass. From low

Earth orbit, the two upper stages successively burn to inject Percival into its

transfer trajectory.

The Delta 7925 can not lift as much mass into orbit as some other

commercially available launch vehicles, but cost is a major constraint in the

Percival mission. The 7925 is a good compromise between performance and

cost. Figure 2.1 shows a schematic of the Delta 7925.

Figure 2.1 Delta 7925 Launch Vehicle Schematic.
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2.2 Earth-Mars Transfer Trajectory

Three types of trajectories were considered for Percival's Earth-Mars

trajectory. These three trajectories are:

1. Hohmann transfer with broken plane maneuver (BPM) at v=90 °

2. Lambert-targeted trajectories

3. Gravity assist

2.2.1 Hohmann Transfer

Hohmann transfer trajectories utilize a minimum AV transfer by traveling

on the smallest ellipse connecting the original and final orbits. Figure 2.2

illustrates the Hohmann transfer trajectory.

Mars i

i

i

i

Iv = 90'

BPM

Earth

Figure 2.2 Hohmann Transfer from Earth to Mars.

The transfer to Mars, however, requires a plane change. A broken plane

maneuver performed at a true anomaly of 90 ° along the Hohmann trajectory will

require the smallest amount of AV. The amount of plane change required in such

a case is the target's ecliptic latitude, 13(4). The following figure (Figure 2.3)

illustrates a Hohmann transfer with a broken plane maneuver.
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Hohmann transfer trajectories from Earth to Mars have launch

opportunities that repeat every 2.1 years. Table 2.1 gives the allowable masses

and AV's for the next three launch opportunities. The launch opportunity in 1996

is the optimum launch date of the three, allowing a spacecraft dry mass of 460

kg. The calculations were made using the programs listed in Appendix A.

Ediptic

/ Earlh [ _'_l iI JJ

/@11 pSun i1_ TransferPlam

Figure 2.3 Hohmann Transfer with Broken Plane Maneuver.

Table 2.1 Comparison of Three Hohmann Transfer Opportunities.

Time of Flight

Total AV

November 28, 1996
.i

254 days

6012 m/s

January 5, 1999

241 days

6629 m/s

March 8,2001

1187 kg

236 days

6707 m/s

Percival AV 2436 m/s 3146 m/s 3250 m/s

1249 kg1235 kg

409 kg460 kg

Total Spacecraft mass

Approximate dry mass 398 kg
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2.2.2 Lambert Targeting

Lambert Targeting does not require a spacecraft to follow just one highly-

defined trajectory like the Hohmann transfer. Therefore, a Lambert targeting

solution can be found for more flexible launch windows. Initially, only Lambert

targeting solutions allowing Percival to arrive when Mars is at one of its orbital

nodes were considered in order to eliminate the need for a plane change. A

Lambert targeting trajectory to a descending node is illustrated in Figure 2.4.

Earlh

Sun

0

Mars

tY
Figure 2.4 Lambert Targeting Trajectory.

Optimization of the Lambert targeting solution considers launch date, time

of flight, and the required AV's. The goal for this type of trajectory was again to

maximize the dry mass of the spacecraft. The results of this optimization are

listed in Table 2.2. As can be seen, neither solution benefits the mission more

than the Hohmann trajectory; thus, no total ,_V would be lower than that of the

Hohmann trajectory, and no larger spacecraft dry mass could be attained.
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Table 2.2 Lambert Targeting Options.

Minimizing MOI AV Minimizing AV from LEO

Launch date

Time of Flight

AV from LEO

August 22, 1996

320 days

5460 m/s

November 29,1996

221 days
3460 m/s

AV for MOI 2610 m/s 3590 m/s

Total spacecraft mass

Approximate dry mass
note: LEO - Low Earth Orbit

MOI - Mars Orbit Insertion

270 kg 970 kg

260 kg

More general Lambert targeting solutions were also investigated. These

were Lambert trajectories with a Broken Plane Maneuver performed 90 ° before

intercepting Mars. As for the Hohmann trajectory with BPM, performing the BPM

on a Lambert trajectory 90 ° before target intercept also requires the least AV (4).

The characteristics of the Lambert solutions calculated were those with launch

dates on each of the 800 consecutive days beginning in mid-November 1996,

and having times-of-flight from 200 to 400 days. The launch dates were chosen

to encompass an entire Earth-Mars synodic period, and also, combined with the

relatively short times-of flight chosen for investigation, to allow for Percival's

arrival at Mars in a timely manner to allow it to carry out one of its important

functions after its primary science missions have been completed--to provide a

communications link to Earth for future missions to Mars. The results of all of

these calculations are too lengthy to display here, but the important result is that

none of the solutions provided a lower total AV or a higher dry mass than did the

Hohmann trajectory described above. Therefore, the broken-plane Hohmann

trajectory is preferred over the Lambert trajectories.

2.2.3 Gravity Assist Trajectories

Gravity assist trajectories utilize the gravitational attraction of a planet or

other large mass to provide a positive AV to the spacecraft during a flyby with the

planet. The best option for a gravity assist trajectory from Earth to Mars would

utilize Venus, which is closer to Earth and Mars than Jupiter. But the additional

weight acquired through radiation protection does not make this option appealing.

Since Percival is already over budget in terms of mass, any added weight can not



be allowed. Also, the longer times of flight would inhibit the types of instruments

that Percival could carry. Therefore, gravity assist is not a viable option.

2.2.4 Baseline Trajectory

After consideration of all of the options, the baseline trajectory for the

Percival mission to Mars was chosen to be the Hohmann transfer with BPM. The

optimum launch date is November 28, 1996. The geometry for Earth departure is

shown in Figure 2.5. All relevant numbers are given in Appendix A.

f

°

f

Motion of Earth

e _= 152.4 °

Dep arture Asy mp tote

Figure 2.5 Earth Departure Geometry.

One reason for the appeal of the 1996 opportunity is the small plane

change required for it compared to later opportunities. The plane change angle

is only 0.53 °, which translates into a relatively small &V of 258 m/s. Thirty five

extra kilograms of propellant have been added to Percival to accommodate a

total of about 85 m/s of trajectory corrections. This additional propellant should

be sufficient for any necessary corrections considering that this is approximately

the amount allowed for Mars Observer, a much larger spacecraft than Percival



(5). After a time of flight of 254 days, Percival should arrive at Mars on August 9,

1997. The approach geometry is shown in Figure 2.6. Again, all relevant

numbers are given in Appendix A.

Motion of Mars _"_.

v=+ ,|
v

Arrival Asymptote

MOI burn

8o0 = 127.2 °

Figure 2.6 Mars Approach Geometry.

2.3 Final Mars Orbit

For insertion into the final Mars orbit, aerobraking was considered as a

propellant-saving option. However, the atmosphere of Mars is very thin (5), so

that appreciable results from an aerobraking maneuver could not be obtained

without performing a dangerously low passage above the Martian surface.

Therefore, this option was discounted, and Mars orbit insertion will be performed

by Percival's thrusters so as to directly enter the final Mars orbit.

The final Mars orbit itself will be a circular, sun-synchronous orbit. A sun-

synchronous orbit was chosen because it minimizes thermal variations on the

scientific instruments, primarily the gradiometer, which could affect their

measurements. A low-altitude orbit, 179.4 km, was selected because it allows
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more accurate gravity readings and the atmosphere is still thin enough at that

altitude that the orbit will not decay because of drag (6). The actual altitude was

chosen because it allows communications with the penetrators every two to three

Martian days, and also allows an orderly coverage of the Martian surface by the

VIMS that results in a complete mapping cycle every 82 Martian days. Figure 2.7

summarizes the final Martian orbit. A schematic representation of the

groundtracks produced by the orbit design is shown in Figure 2.8.

As shown in Figure 2.7, the orbital plane is roughly perpendicular to the

direction of the sun, and will remain in this configuration for the duration of the

mission. Therefore, the pointing requirements for Percival's Earth-facing antenna

only encompass a limited range of angles, minimizing repositioning demands on

the antenna which produce mechanical noise disruptive to the gradiometer.

Altitude: 179.4 km
Orbital Inclination ~ 92.4 °

Mars

Circular, sun-synchronous orbit
Altitude: 179.4 km
Inclination: 92.36 °
Period: 108.2 minutes

Figure 2.7 Final Mars Orbit.
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Figure 2.8 Groundtracks of Martian Orbit.

Upon completion of its one to two year mission, Percival will boost itself

into a permanent 375 km circular orbit above the Martian surface. This is to obey

international contamination requirements of ensuring a less-than 0.0001

probability that the spacecraft will impact Mars before January 1, 2009, and a

less-than 0.05 probability that an impact will occur between January 1,2009, and

January 1,2039. To satisfy these requirements, an orbit with a semi-major axis

of at least 3767.2 km is required (5). A 375 km circular orbit satisfies this
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requirement. An orbit of this altitude will also provide better coverage of Mars

and better access to Earth for future missions that may utilize the Mars Balloon

Relay on Percival for communications.

2.4 Orbital Mission Scenario

To summarize, the scenario for the Earth to Mars trajectory is outlined

below.

Launch
• Launch optimally on November 28, 1996

• Launch on Delta 7925 with second, partially-fueled Star 48B upper stage

• Upper stages and spacecraft placed in 185 km circular orbit about Earth

• Total spacecraft mass of 1187 kg

Hohmann Transfer with Broken Plane Maneuver

• Hohmann transfer with BPM at v=90 °

• Time of flight - 254 days

• AV required to initiate Hohmann transfer- 3576 m/s

• Plane change required of 0.53 °

• AV required for plane change - 258 m/s

Arrival at Mars

• Arrival date - August 9, 1997

• Direct insertion to 179.4 km circular orbit

• AV required for insertion - 2178 m/s

• Spacecraft dry mass - 460 kg

• Boost Percival at end of mission to 375 km circular orbit

• _V required - 90.9 m/s

2.5 Spacecraft Propulsion System

The primary option being considered for the propulsion system is chemical

fueled thrusters because they are well tested, reliable, and low cost. The AV

required of these thrusters is 2436 m/s. The estimated hardware mass is 60 kg

and the estimated propellant mass is 730 kg.
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2.6 Summary

In order to fulfill all of the requirements and considerations of the orbits

and propulsion design of the Percival mission, many options were considered

and some assumptions were made. The mission scenario and final Mars orbit

have been chosen so as to minimize the AV's required to execute the mission.

This is primarily to maximize the allowable spacecraft mass at Mars, but also to

help lower the cost of the mission. The addition of a second upper stage on the

Delta to allow more mass will result in a higher cost arid more design effort, but

the increased cost should be small compared to the total cost of the launch

system. Furthermore, having a more powerful upper stage system facilitates the

design of a mission that will accommodate all of the proposed objectives.

Nevertheless, other options for third stages and transfer trajectories should be

investigated in an attempt to further improve the efficiency of the mission and to

increase its scientific potential.
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3.0 Surface Penetrator Design

One of Percival's primary objectives is to land surface penetrators on Mars

in order to deploy instruments on and below the surface. The penetrator

instruments will be used to acquire scientific data about Mars in order to advance

planetary science and to provide a precursor for future unmanned and manned

missions to Mars. The impact sites for the penetrators will be selected on the

basis of scientific value and potential for future manned missions,

The basic ponetrator mission scenario consists of the following stages:

1) Release from Percival

2) Deorbit and descent to the Martian surface

3) Impact with surface

4) Relay of scientific data back to Percival and then to Earth

for a mission lifetime of one Earth year

Each penetrator consists of a forebody which penetrates deep into the surface

and an afterbody with remains on the surface. Both the forebody and the

afterbody contain scientific instruments and are connected by an umbilical cord

designed to transfer data and power between the two sections. Figure 3.1 shows

how the penetrator deploys upon reaching the Martian surface,

Afterbody

Forebody

Figure 3.1

I

J

Surface Penetrator Deployment.

/
Afterbody

Umbilical Cord

Forebody
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3.1 Deployment and Atmospheric Entry

The penetrators will be released from Mars orbit from Percival, instead of

the transfer orbit specified in the Proposal. There are two reasons for this. First,

release from Mars orbit lowers the impact velocity that the penetrator must be

designed to survive. Second, the required precision in the propulsion and

attitude control system is lower when the penetrators are released from the

Earth-Mars transfer trajectory, which lowers the weight and complexity of the

guidance and control systems.

A spring or similar device will be used to separate each penetrator from

the Percival spacecraft. Once the penetrator has moved away from the Percival

spacecraft, a small motor will burn to deorbit the penetrator. For preliminary

calculations, a 500 m/s AV deorbit motor was assumed. Future analyses will

consider the sizing of the deorbit motor and the descent trajectory of the

penetrator.

Some form of deceleration during the descent form orbit will be necessary

to reduce the impact loads on the penetrator. A solid rocket motor was chosen

for deorbit and a drag chute for atmospheric deceleration. The optimum size for

the drag chute was determined to be 1.14 m in diameter. The chute deploys

after about 200 seconds when the penetrator reaches the tangible atmosphere.

After deployment, it takes about 80 seconds for the penetrator to impact the

surface. A smaller drogue chute is also deployed behind the large chute to assist

in the deployment of the large chute and to increase the aerodynamic stability.

Table 3.1 shows the results of preliminary drag chute sizing. The 1.14 m drag

chute was chosen since it slowed the penetrator sufficiently without being too

large.

Table 3.1

Diameter Im)

1.00

Drag Chute Sizing

Impact Velocity Im/s)

304

Time in Atmosphere (s)

82

1.14 234 106

1.30 180 138

1.50 135 185

1.7O 105 238

2.0 76 329
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3.2 Penetrator Structure and Emplacement

The structure of the penetrators must withstand the large deceleration

loads that occur during impact with the surface of Mars. The structure must also

protect the scientific instrumentation and penetrator subsystems from being

damaged during the impact. The analysis method used for the penetrator

emplacement and the structural design are taken from Mars Balloon and Surface

Penetrator Study by Mark E. Johnson. This method is described in detail in

Appendix B of this report. Any equations or related data not mentioned in the

following text may be found in this Appendix. The results of the penetration and

stress analysis for the Percival mission penetrators are given in the following

sections.

3.2.1 Impact Conditions

To determine the necessary strength of the penetrator structure and the

depth of penetration, the initial impact conditions must be determined. The

primary concern is the impact velocity, since the penetration depth equations use

impact velocity as an input. Using a 1.14 m diameter drag chutes yields a 235

m/s impact velocity.

The obliquity of the impact is also a concern. Stress analysis of the

penetrators is based on a normal impact with the surface (longitudinal axis of

penetrator oriented perpendicular to the surface). Any deviation from a normal

impact will induce bending stresses in the penetrator structure. Future analysis

will determine the oblique impact tolerance of the penetrator structure.

3.2.2 Penetrator Emplacement

Penetrator emplacement describes the loading and penetration of the

penetrator once it impacts with the surface. The depth of penetration, the

velocities, and the accelerations experienced by the penetrator during impact are

given here.

Equations for the depth of penetration take into account soil

characteristics, penetrator nose shape, mass to cross-sectional area ratio, impact

velocity, and the varying mass and shape of the penetrator sections. This

analysis assumes that the soil cross-section is homogenous.
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To account for unknown conditions at Mars, both hard and soft soil

penetration models were created. The primary concern for a hard soil model is

obtaining sufficient penetration without excessive loads. For the soft soil model,

the primary concern is limiting the penetration of the aft section of the penetrator.

Excessive aft body penetration would prohibit the antenna and afterbody

instruments from operating properly. Another soft soil concern involves the

design of the umbilical cord connecting the two penetrator sections. If the

forebody separated from the afterbody too much, the umbilical cord would break.

The input quantities for the penetration analysis are shown in Table 3.2.

Table 3.3 shows the results of the penetration analysis. The results show that

the critical accelerations occur in the aft section of the penetrator since its

penetration depth is much smaller.

Table 3.2 Penetration Analysis Input Quantities.

Input Variable

Impact Velocity

Nose Performance Coefficient

Low-mass Scaling Coefficient

Hard Soil Coefficient

Soft Soil Coefficient

Value

235 m/s

1.33 / 0.6

0.87068

6

Table 3.3 Penetrator Performance.

Impact velocity

Maximum deceleration

Total Forebody

Penetration

Antenna height (above

surface)

Hard Soil Model

235 m/s

Fore Section: 2,420 g

Aft section: 8,455

1.54 m

0,24 m

Soft Soil Model

235 m/s

Fore Section: 855 g

Aft section: 2,990

3.66 m

-0.3 m
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3.2.3 Structural Design

The penetrator must maintain its structural integrity so that the internal

instruments and subsystems are not damaged. The penetrator is modeled here

as a thin cylinder with titanium as the primary structural material. Steel was also

considered as a primary structural material, but titanium saves approximately 5

kg per penetrator in structural mass. The instruments and subsystems are

housed in aluminum caging and crushable aluminum honeycomb. The

dimensions and relevant information of the penetrator design are given in Table

3.4. A dimensioned schematic of the penetrator design is given in Figure 3.2.

The stiffness of the penetrator will be enhanced by the presence of internal

structures. This effect will not be considered in this analysis. The following

analysis examines the two primary expected failure modes: Euler column

buckling and local wall crippling. Future analyses will consider the effect of the

internal structures and crushable aluminum honeycomb structure on protecting

the internal instruments and subsystems.

Table 3.4 Penetrator Dimensions.

Composition

Nose cone length

Nose cone, fore section diameter

Fore section length (incl. cone)

Fore section wall thickness

Titanium nose and walls, with

aluminum honeycomb impact

attenuators

20.32 cm

10.16 cm

70.21 cm

0.60 cm

Aft section diameter 20.32 cm

8.47 cmAft section length (not incl. antenna)

Aft section wall thickness

Total enclosed volume

Total structural mass

0.35 cm

5,577 cm3

6.74 kg
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Figure 3.2
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Penetrator Dimensions.

For each failure mode, the highest stress experienced within the

penetrator wall is used as the basis of the structural design. Only hard soil

stresses are considered since soft soil stresses will be lower. The resulting

stresses for the hard soil case are shown in Table 3.5. Critical stresses for each

failure mode and the corresponding safety factors are given in Table 3.6. These

results show that local wall crippling is the limiting failure mode.

Table 3.5 Maximum Stress in Penetrator Walls.

Section Maximum Stress

Fore 175.7 MPa

Aft 173.1 MPa

Table 3.6 Critical Stresses for Penetrator Loading.

Section

Fore

Aft

Euler Column Buckling

Critical Stress

10.87 GPa

1,646 GPa

Safety Mar_in

60.86

9507

Local Wall

Critical Stress

204.3 MPa

205 MPa

Crippling

Safety Margin

16.2 %

18.4%
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3.3 Scientific Instruments

The scientific instruments placed on the surface penetrators will carry out

four primary scientific objectives. These four objectives are planetary science,

soil analysis, surface imaging, and in situ atmospheric measurements. Each

penetrator will contain the same scientific payload. The instruments were

evaluated based on the following criteria:

• Scientific value

• Weight

• Impact Survivability

• Power requirements

• Cost

• Data requirements

• Operational lifetime

• Compatibility

3.3.1 Planetary Science Instruments

Planetary science is the determination of the interior structure of Mars.

This involves the study of the surface structure, global seismology and magnetic

field of the planet. Planetary science measurements will be carried out by a

seismometer, a decelerometer, and a magnetometer.

Table 3.7 contains a description and the weight, power, and data rate

requirements for each instrument. The seismometer is the primary planetary

science instrument on the penetrator. The network of three penetrators will

provide information on the interior structure of the entire planet. Information on

the local surface structure is obtained from the decelerometer which records data

as the penetrator impacts the surface. The magnetometer will provide

information on the local and global magnetic fields.

21



Table 3.7 Mass, power, and data rate requirements for the planetary science

instrumentation. (7).

Instrument

Seismometer

Magnetometer

Decelerometer

Function

Seismic activity

3-axes

Magnetic field strength

3-axes fluxgate

Deceleration history

PieTn_electric crystal

Mass, kg

0.90

0.235

0.03

Power,

W

0.4

0.50

0.02

Data

Ratelkb

240/day

800/event

30/day

6/event

3.3.2 Soil Analysis Instruments

Soil analysis is the study of the chemical composition, water content, and

physical properties of the subsurface soil. The physical properties of the soil

include the subsurface temperature and conductivity.

Table 3.8 contains a summary of the soil analysis instrumentation. The (z-

backscatter spectrometer will be the primary instrument for determining chemical

composition. A 1,-ray spectrometer could provide complementary data to the ¢x-

backscatter spectrometer data, but the 7-ray spectrometer is not compatible with

the RTG power source. The radioisotopes emitted by the RTG would

contaminate the data taken by a y-ray spectrometer (8). The water detector uses

a P205 electrolytic cell to measure the presence of water vapor in a soil sample.

The thermoprobe is a set of thermocouples located on the umbilical cord of the

penetrator which can measure subsurface temperatures. The permittivity meter

will provide information about the electrical properties of the ground. The

information from the thermocouple array and permittivity meter will enhance the

soil composition data obtained from the spectrometers and water detector.

3.3.3 Imaging Systems

Imaging systems on the penetrators will provide information on the

geology of the Martian surface. Two imaging systems will be on each penetrator:

a descent imager located on the nose of the penetrator and a panoramic imaging

system located in the top of the afterbody. The descent imager is a monochrome
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camera, which is based on a frame-transfer CCD, and is not designed to survive

the impact with the Martian surface. The descent imager has a wide angle lens

with a field-of-view of 40 ° (8). The panoramic imaging system consists of a

television camera with black & white and color capabilities. Table 3.9

summarizes the design parameters of the descent and panoramic imaging

systems.

Table 3.8 Mass, power, and data rate requirements for the soil analysis

Instrumentation (7).

Instrument

o_-Backscatter

Spectrometer

Water detector

Thermoprobe

Permittivity

meter

Function

Subsurface composition

Detects CrN10

H20 content

P20_ electrolytic cell

Subsurface temperature

thermocouple array

Ground conductivity

Mass, kg

0.6

0.3

0.3

0.6

Power, W

5

0.5

Date

Rate:kb

16/meas.

3/meas.

.05/sec

.5/meas.

Table 3.9 Mass, power, and data rate requirements for the penetrator

imaging systems (8).

Instrument

Descent Imager

Imaging System

Function

Surface geology

Surface geology

Facsimile camera

Mass, kg

0.3

0.6\0.15

Power, W

2

2

Date

Ratelkb

Real time

mem=256 kb

512/day
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3.3.4 Atmospheric Measurements

A meteorology package containing four distinct instruments will measure

the temperature, pressure, humidity, and wind speed and direction of the local

atmosphere. The meteorology package must be located near the end of the

afterbody of the penetrator. The sensors should be deployed above the

penetrator to reduce the effect of the heat flux generated by the other

subsystems and to insure that the meteorology package is sufficiently elevated

above the surface of Mars. Further investigation of possible deployment

methods is necessary. Table 3.10 contains the design parameters for the

meteorology package.

Table 3.10 Mass, power, and data rate requirements for the meteorology

package instrumentation (8).

Meteorology

Package

Thermocouples

Humicap

Anemometer

Barocap

Function

Temperature

Thin-wire sensor

Humidity

Capacitive sensor

Wind speed & direction

ion-discharge sensor

Pressure

capacitive sensor

Mass, kg

0.15

.002

.075

.002

Power, W

.0175

.001g

.0003

.0019

Data

Rateikb

5-10/day

3.3.5 Instrumentation Layout

The scientific instruments must be arranged with the penetrator

subsystems according to the objectives and requirements of each instrument.

The seismometers, for example, must be placed in the forebody of the penetrator

structure to eliminate the errors induced by the wind on the surface of the planet.

Figure 3.3 is a schematic of the instrument layout within each penetrator.
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Figure 3.3 Schematic of Penetrator Scientific Instrument and Subsystems

Layout.

3.4 Penetrator Subsystems

Each penetrator subsystem was chosen on the basis of performance,

weight, cost, power requirements, and impact survivability. Each subsystem is

detailed in the following section. The mass, power, and volume requirements are
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based on the analysis done by Mark E. Johnson in his thesis titled

and Surface Penetrator Study.

For the long-term life of the Mars penetrator, the only two viable choices

for the power subsystem are solar arrays and radioisotope thermoelectric

generators (RTG's). However, solar arrays have the serious liabilities of poor

impact survivability and difficulty in continuous service on the active and harsh

environment of the Martian surface. Even though RTG's are expensive and

complicated, they have been tested to several thousand g's of loading. Nickel-

hydrogen batteries will be used to supply short-term power requirements such as

communication with Percival. A 0.5 W RTG with a 20 W battery requires about

2.5 kg of mass and 1000 cm 3 of volume.

Communications between the penetrator and Percival is essential. A helix

antenna was chosen because a traditional dish antenna could not survive the

impact of landing on the surface of Mars. A helix antenna requires about 1.5 kg

of mass and a continuous 0.2 W of power for the receiver and a short-term power

of 5 W for transmission. A helix antenna of this sort is expected to survive as

much as 10,000 g's.

Thermal control is another concern for the harsh environment of the

Martian surface. Temperatures on the surface vary from 130 K to 300 K. The

batteries need to always operate in the upper range of this band, so they must be

heated. Fortunately, RTG's produce waste heat which can warm the batteries. A

thermal blanket to surround the batteries and RTG will weigh about 0.3 kg.

However, the excess waste heat from the RTG must be transferred away from

the penetrator by heat pipes. The heat pipes connect the RTG to the aft section

of the forebody. The heat is conducted out of the penetrator and into the soil on

the side opposite that of the soil composition instruments to minimize heat

contamination of the soil.

The computer and data storage requirements for each penetrator must

also be considered. A typical space-certified computer system to meet our

requirements has a mass of about 0.25 kg, a power requirement of 0.05 W, a

volume of 200 cm 3, and can survive about 10,000 g's.
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3.5 Low-Cost Alternative

Because of the complexity of the penetrators (such as the use of RTG's

and impact hardened components), concerns have been raised about the total

cost of each penetrator. If it becomes necessary to lower the cost of the

penetrator, a new simpler design must be pursued. First, the RTG's would be

replaced with batteries. This would lower the lifetime of the penetrators

drastically, lessening the usefulness of instruments such as seismometers, which

could then be eliminated. It is also possible that the penetrator structural design

can be made into one piece, because the seismometer requirements will not

have to be considered if they are eliminated. All of the above changes will

significantly lower the cost of the penetrators.

3.6 Summary

In summary, the surface penetrators are composed to two primary

sections; the forebody, which penetrates into the surface, and the afterbody,

which remains on the surface. A small solid rocket deorbit motor provides for

deceleration from orbit, and a 1.14 m diameter drag chute slows the penetrator

down to acceptable velocities. An umbilical cord containing power and

communication lines connects the two sections. Each penetrator contains

instruments for planetary science, soil composition, imaging, and meteorology.

An RTG provides power for the penetrator, with a nickel-hydrogen battery

providing for short-term power needs.

Table 3.11 contains the mass and power summary for each penetrator.

The penetrators were allotted 75 kg of total mass, so three penetrators can be

carried by Percival. The total power of the instruments and subsystems is also

less than the maximum power provided by the RTG's.
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Table 3.11 Penetrator Mass and Power Summary.

System Mass (kg)
Forebod Land Nose Cone 4.93
Afterbody and Terrabrake 1.84

Drag Chute 3.5
_-o--"{6_-19_tor 5

Power Req. (W)
0
0

.............................. ........................

0
0

Planeta Science Inst. 1.17 0.16
Soil Composition Inst. -].2 5-Peak

]9[eTe61;616g_/-Ilisti;uments ...........................0,23 ......o:o25
Helix Antenna 1.38 5 Peak / 0.2

Umbilical Cabie ................................... 0.5 .............. 0 ...........
Totals 24.47 0.476
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4.0 Gravity Field Mapping and Science Instruments

As a precursor to future manned and unmanned missions, Percival is

responsible for collecting a multitude of data about Mars. Instruments onboard

Percival will provide detailed information about the Martian gravity field and the

surface composition of Mars, adding to the data that will be compiled by the Mars

Observer spacecraft. Mars Observer will be measuring the Martian gravity field

using radioscience techniques. The Percival mission plans to improve and

augment on the gravity field mapping carried out by Mars Observer. The surface

composition instrument has been placed aboard Percival since this instrument

was not within the Mars Observer budget. By adding to and improving the data

that Mars Observer is collecting, a better understanding of Mars will be achieved.

4.1 Gravity Determination Techniques

One of the primary mission objectives of the Percival mission to Mars is to

improve and augment the gravity map determined by Mars Observer. In order to

accomplish this goal, Ares Industries considered three gravity measuring

techniques. These three techniques are listed below:

• Gradiometers

• Doppler tracking

Spacecraft to spacecraft

Earth to spacecraft

• RADAR tracking

4.1.1 Gravity Gradiometry

Gradiometers map the gravity field by measuring changes in accelerations

using sensitive accelerometers. Figure 4.1 is a schematic design of a single

accelerometer.

Changes in acceleration are measured as changes in capacitance along

the radial and transverse directions. Measuring the gravity field with

gradiometers is a simple concept and one that has been tested on the ground

and in aircraft, however, it has never been proven in space nor has the proposed

accuracy of 10-2 to 10-4 Eotvos been achieved. There are professionals working

on space based gradiometers such as Dr. Paik at the University of Maryland,
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Dual Axis Accelerometer Preliminary Design (9).

who believe that it is possible to put gradiometers in space with available

technology (10). Such a system would not achieve our proposed accuracy but it

may be able to achieve an acceptable accuracy of 1 to 10 -1 Eotvos, which would

still be an improvement over the Mars Observer measurements. The difficulty

with this system is that any slight acceleration not caused by the gravity field

around Mars will pollute the data. These accelerations could be caused by a

number of things such as fuel sloshing, thermal variations, antenna movements,

and attitude adjustments. However, if the acceleration is known and is not too

large, it can be accounted for in the data reduction. The challenge is thus

designing a guidance and control system capable of providing and maintaining a

highly accurate attitude.

4.1.2 Radioscience Gravity Mapping (Doppler shift measurements)

Doppler tracking measures the gravity field of a planet indirectly by

tracking the changes of a spacecraft in orbit. More specifically, this method

measures the change in frequency of the tracking signal. These determinations
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can be performed from one spacecraft to another or from Earth to a spacecraft.

If the spacecraft to spacecraft approach is considered the receiving spacecraft, or

target spacecraft, must be capable of receiving and returning a radio signal sent

from the measurement spacecraft, causing the operating lifetime of the target

spacecraft becomes a constraint on mission design. Further, the target

spacecraft must be in view of the measurement spacecraft. In this approach, too

much of the gravity field measurement is dependent on the target spacecraft.

The Earth to spacecraft approach on the other hand is a well proven technique

which does not rely on a second spacecraft. Percival does however have to

compete with Magellan, Galileo, Mars Observer and other planetary explorers for

Deep Space Network (DSN) time. Doppler tracking is a low cost, well proven

method and is currently being used by Mars Observer to map the gravity field

around Mars (10).

4.1.3 RADAR Tracking Gravity Mapping

RADAR tracking is similar to Doppler tracking measurements, but the

signal from one spacecraft to another or from Earth to a spacecraft is measured

after it rebounds off the target. RADAR tracking requires more power than

Doppler because it must send out a signal strong enough that its reflection can

be sensed. The RADAR tracker must also be capable of accurately tracking its

target. For the above reasons, RADAR tracking was eliminated as a feasible

method of gravity field determination.

4.2 Spacecraft Interface

The choice to use gradiometers to map the gravity of field of Mars affects

the rest of the spacecraft. There are three main areas affected which will each

be discussed in the following sections. They are:

• Attitude determination

• Spacecraft orientation

• Subsystem interface

4.2.1 Attitude Determination

Gradiometers are more sensitive than Doppler or RADAR measurements,

and therefore require more precise knowledge of the attitude of the spacecraft.
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The precision with which Percival will need to be able to determine its attitude are

listed in Table 4.1 (12).

Table 4.1 Gradiometer Attitude Control Constraints.

Pitch, yaw, and roll

Angular rate

Angular Acceleration

Linear Acceleration

< 0.05 °

< 0.106 rad/sec

< 10 -8 rad/sec 2

< 10 .8 m/sec 2

The instruments used to determine the attitude of the spacecraft must not

create vibrations which would affect the gradiometer readings. The following

instruments will be used to determine the attitude of Percival.

• Fixed head star tracker

• Sun sensor

• Ring laser gyroscopes

4.2.2 Spacecraft Orientation

In order to measure the gravity field of a planet, gradiometers sense

changes in acceleration. As a consequence, anything that produces an

acceleration will affect the gravity field measurement. Most planetary spacecraft

orbit in a local vertical - local horizon reference frame. In this reference frame,

one axis in the spacecraft is always pointed perpendicular to the local horizon

and usually the spacecraft is spin stabilized. This orientation has the advantage

that the scientific instruments are always pointing toward the planet that they are

observing. However, in this reference frame, the (o_2r) centrifugal acceleration

will affect the gradiometer readings. For an accurate measurement, the o,'2.r

must be known precisely so that it may be taken out of the data or the

gradiometer must be a single axis gradiometer. When using a single axis

gradiometer, two accelerometers (one for redundancy) are placed on the spin

axis of the spacecraft so that there is no co2r term to determine (6). This limits

the spacecraft to measuring changes in gravity in only the local vertical direction

but this is still an improvement on Mars Observer's data.

The inertial reference frame orientation, in which one axis of the

spacecraft is always pointed toward a distant object and the spacecraft does not
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rotate as illustrated in Figure 4.2, eliminates the centrifugal acceleration term.

However, now the scientific instruments can not always observe the planet and

the direction of the transmitting and receiving communication antennae change

position with respect to the Earth. This is not a convenient attitude for the Visible

Infrared Mapping Spectrometer (VIMS). In addition, the movement of the

antenna will create unwanted accelerations.

• Distant Star

Mars

Figure 4.2 Inertial Reference Frame.

4.2.3 Subsystem Implications

The two other subsystems that the gradiometers and attitude control affect

are the propulsion and thermal systems. The propulsion system must be

designed to prevent fuel sloshing because the resulting vibrations affect the

gravity measurements. Multiple fuel tanks would lessen fuel sloshing (13). Also,

cryogenic cooling would increase the accuracy of the gravity measurements. In

our proposal, Ares Industries initially proposed a level of accuracy of 10 -2 to 10-

4 Eotvos. To achieve this level of accuracy, Percival's gradiometers would have

to be cryogenically cooled (12). However, cryogenic cooling would add extra

mass to the Percival spacecraft. A level of accuracy of 1 to 10 "1 Eotvos is
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possible without cryogenic cooling and is still considerably more accurate than

the readings of Mars Observer (10).

4.2.4 Mass, Volume, and Power Requirements

The following table (Table 4.2) summarizes the mass, volume, and power

requirements for the gradiometers and the two scientific instruments.

Table 4.2 Mass, Volume, and Power Requirements of Gradiometer and Science

instruments.

Dimensions

Each Gradiometer 60x60x90 cm

VlMS 120x64x52 cm

Balloon Relay dia 5 cm

length 60 cm

Mass

50kg
22 kg

6.8 kg

note: VIMS - VisibleInfraredMapping Spectrometer

Power

65 - 125 W

74 W

12.5 W

4.3 Scientific Instruments

The two instruments carried on Percival are a Visible and Infrared

Mapping Spectrometer (VlMS), shown in Figure 4.3, which was cut from Mars

observer due to funding, and a Mars Balloon Relay (MBR) communications

system (14). The VlMS instrument uses imaging spectrometry to identify the

spectral features of Mars in the visible and infrared regions. The spectral data

will provide a mineralogical map of the Martian surface and a concentration map

of water and carbon dioxide in the atmosphere (clouds) and on the surface (frost

and snow) of Mars (14). The MBR serves as a communications link between

surface vehicles and Earth (11). The MBR will operate beyond the science

phase of the Percival mission.

The VIMS has two data acquisition modes: mapping mode and snapshot

mode. Mapping mode takes a representative sample of the surface. In this

mode every other 182 m pixel is read and every other scan line is skipped. The

snapshot mode is a much more comprehensive sampling mode. In this mode

every pixel is read and every line at full resolution. A maximum area of 53.46

km 2 may be mapped in this mode. Typically, the mapping mode will be used for

most data acquisition while the snapshot mode will be used for detailed maps of
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specific areas of interest VIMS provides a 512 kbyte buffer to accommodate

both modes of data acquisition

COOLER

(:0!

NA.DI._:

:AN:

M!R ROR

Figure 4.3 Visible and Infrared Mapping Spectrometer Schematic (14)

4.4 Summary

To summarize, the gravity mission objective will be achieved through the

use of gravity gradiometers. Following lists the major points of the gradiometers:

• Accelerometers on the axis of rotation

• Reads lower and higher order gravity terms

• Precise attitude and position necessary

• Local vertical - local horizon orientation

• Propulsion system - multiple fuel tanks

• No cryogenic cooling necessary

• Readings from 1 to 10-1 Eotvos

• Readings taken for 1 - 2 Martian years

• Doppler shift measurements used as backup

• Doppler shift measurements augment Mars Observer's data if resonance

designed accordingly
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For the future, costs for these instruments need to be determined, radioscience

techniques need to be investigated further, and the design of the gradiometer

needs to be refined.
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5.0 Spacecraft Structure and Subsystems Design

The purpose of this section is to consider options for the spacecraft

structure (bus) and subsystems. Two potential spacecraft busses were being

considered prior to the PDR1 phase, one of which included a new design using

aerobraking. The second option for the spacecraft bus was a scaled clown

version of the Planetary Observer class spacecraft. These two alternatives were

examined carefully and a decision was made based on mission requirements and

costs.

In addition to determination of the spacecraft structure, this section also

examines the subsystems that will be used on the Percival spacecraft. The

subsystems included are power systems, thermal control, communications, and

guidance, navigation, and control (GN&C). Where applicable, there is a brief

discussion as to why a particular subsystem was chosen over a competing

subsystem.

5.1 Spacecraft Structure

As mentioned previously, one consideration for the spacecraft bus was a

new design utilizing aerobraking. This design was ruled out because the thin

Martian atmosphere will not be able to supply the necessary drag required for

considerable propellant savings. Also, a new design, which would incorporate an

aeroshell to protect the spacecraft, would require extensive research and

development (R&D). Thus, a scaled down version of the Planetary Observer

class spacecraft (currently used on the Mars Observer mission), with slight

modifications, will be used (see Figure 5.1). Ares Industries feels that this design

will minimize R&D costs and provide valuable feedback on the reliability and

performance of the bus (based on information attained from the Mars Observer

mission).

5.2 Power Subsystem

The Percival spacecraft will be powered by a Radioisotope Thermoelectric

Generator (RTG) and a small battery for peak power requirements. An RTG was

chosen as the main power systems because of its excellent mass to power ratio,

having a mass of 50 kg and supplying about 300 W of power. Because RTG's
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Figure 5.1 Scaled Down Version of Planetary Observer Spacecraft.

use a Plutonium 238 isotope that can only be irradiated at the Savannah River

Reactor, it is extremely expensive to manufacture an RTG (estimated at $20,000

per watt produced by the RTG). Currently, the Savannah River Reactor is not

operable and will require several months of start up time in addition to at least 30

months for production of the 238 isotope (15). Because of the present costs and

time constraints, other sources of plutonium 238 should be found, such as the

stores which were previously reserved for the now canceled CRAF mission.

Strontium 90, an isotope that is produced as a byproduct in nuclear power

reactors, is also being considered as a potential fuel for the RTG. This material

is readily available and also has an excellent mass to power ratio (16). Strontium

90 was used in SNAP devices (early RTG's) but has never been used on RTG's

in space (16). It may be expensive to separate Strontium 90 from other reactor

products, and the feasibility of using this material in space has not been

investigated fully.
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At one point in the mission design, consideration was given to the use of

solar arrays as a potential power source. They were discarded as an option

because of the creation of mechanical noise that would occur during realignment

phases. The gradiometer that will be used for gravity mapping is highly sensitive

to mechanical noise. Therefore, unnecessary mechanical noise could bias

scientific data. Also, because the solar arrays occupy a considerable area

around the spacecraft, they could infringe upon the reception and transmission of

telemetry data.

5.3 Thermal Control Subsystems

Both active and passive thermal control measures will be used by the

Percival spacecraft. Passive thermal control devices include thermal blankets

and surface coatings (15). Ares Industries felt that the active thermal control

devices should be limited to those that create the least mechanical noise while

still meeting the requirements of both subsystems and science instruments.

Therefore, freon radiators will be used by Percival for cooling where required.

Heaters will supply any necessary temperature increases on the spacecraft.

5.4 Communications Subsystem

The Percival spacecraft has two independent communications systems.

First, the Mars Balloon Relay (MBR) instrument will relay data between the

penetrators or future surface missions and Percival. This instrument comprises

an antenna, transmitter, and receiver in one package. The penetrator data is

relayed between 401 and 406 MHz. The MBR antenna has no pointing

capabilities and is fixed to the "Mars-facing" side of the spacecraft. The

spacecraft will be in view of the penetrators for a maximum of 215 seconds on

each pass, and during this time, the MBR and the penetrator will establish

communications and relay the penetrator's accumulated data. The data transfer

rate for the MBR is limited to 16 kbps (thousand bits per second); therefore 200

kilobytes of data can be transferred in a typical 100 second pass.

A parabolic high-gain antenna will provide communications with Earth. An

antenna size of 1 m will provide acceptable performance. The system will

operate in the X band at 8.4 GHz, which is a standard frequency for space

communications. Calculations of the total system performance show that for a
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transmitter output power of 5 watts RF and a data rate of 150 kbps, for the worst

case scenario when Earth and Mars are 2.5 AU apart, the received signal to

noise ratio will be 9 dB for the 34-m and 15 dB for the 70-m Deep Space Network

(DSN) antennas (16, 17). This signal to noise ratio is sufficient to ensure reliable

communications with Earth. The transmitter will use solid-state electronics and

will require 20 watts of electrical power when operating. The half-power

beamwidth of the 1-meter antenna, at this frequency, is 2.5 °. In the worst case,

when Earth is at its maximum elongation as seen from Mars, this beamwidth will

require that the antenna be repointed every two minutes. Due to the

accelerations and rotations caused by antenna movement, no gravity

gradiometer data can be taken during the repositioning. A low-gain antenna will

also be included on Percival for contingency communications if the high-gain

antenna cannot be used or loses Earth point. The low-gain antenna will be

helical with a beamwidth of 67 °, which is sufficient to maintain communications

without the need to repoint the antenna. The maximum data rate if the low-gain

antenna must be used is 1200 bps.

The mapping orbit has a period of 108 minutes, with 52 minutes available

for data playback to the DSN antennas on Earth. It is anticipated that the

Percival mission will receive a DSN allocation equal to that of Mars Observer,

which uses one 8-hour period per day on the 34-meter HEF subnet antennas to

transmit to Earth. In one 8-hour DSN pass, Percival can transmit data over four

orbits, for a total of 1622 megabits of data transmitted to Earth per day.

The data sent to Earth will be encoded by the Reed-Solomon method,

which encodes redundant bits with data bits in such a way that if errors are

introduced during transmission, the original data can be recovered if the errors

are not too serious. The Reed-Solomon code replaces every 218 bits of data

with 250 bits of encoded data, resulting in a communications throughput speed of

130 kbps.

5.5 Guidance, Navigation, and Control

A precise and reliable guidance, navigation, and control system is

essential to the successful completion of Percival's mission objectives. Each

subsystem is designed to meet the requirements imposed by the overall

spacecraft and scientific objects. The guidance system determines where the

spacecraft needs to go, the navigation system determines where the spacecraft
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is, and the control system performs the acts necessary to get the spacecraft from

where it is to where it needs to go. The guidance, navigation, and control

subsystems are described in the following paragraphs.

5.5.1 Guidance

The guidance system for Percival is contained on the spacecraft. Percival

will utilize autonomous guidance with ground based override capability.

Spacecraft-based guidance does impose slightly more weight, power, and cost

penalties on Percival than does ground-based guidance. However, for reasons

of practicality and mission safety, ground-based override capability will be used.

5.5.2 Navigation

Percival will have a variety of navigation instruments, such as sun

sensors, a star sensor, and a ring-laser gyroscope. The sun sensor is used as a

coarse acquisition sensor. In other words, it is used to estimate the attitude of

the spacecraft, to an accuracy between 0.01 and 0.1 degrees, so that the star

sensor can then be used to improve the accuracy of the attitude determination.

Percival will have four sun sensors, which will allow the spacecraft attitude to be

determined from any initially unknown position. Percival will also have a fixed-

head star tracker, which will provide a very accurate position measurement for

Percival on the order of 0.001 degrees of accuracy. The fixed-head tracker will

be used in lieu of a gimbaled star tracker in order to minimize mechanical noise,

weight, and cost. Finally, Percival will contain a ring-laser gyroscope. Ring-laser

gyroscopes use certain properties of light to determine attitude rates. The ring-

laser gyroscope has many advantages over conventional gyroscopes, including

greater accuracy and reliability and lower weight. The gyroscope will keep track

of the attitude in between star tracker measurements, and the star tracker will

update the gyroscope in order to minimize drift error. Ring-laser gyroscopes are

a new technology, but they have been proven on the Boeing 757 and 767 as well

as the Orbital Sciences Transfer Orbit Stage. This combination of instruments

will satisfy all of the navigation requirements for Percival (15).

5.5.3 Control

Twenty-four reaction control jets will be used for attitude control on

Percival. Two separate attitude control systems will be used for reliability

purposes, with each system containing its own independent fuel system. Three-
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axis control capability will be available because of the distribution of the twelve

jets in each control system. The distribution also allows the control system to

survive a single jet failure without impairing the ability of the control system.

Figure 5.2 shows a schematic representation of the control system. One of the

control systems will contain hydrogen, or cold-gas, thrusters for fine attitude

control. The other control system will be composed of hydrazine, or hot-gas,

thrusters with a catalyst for higher thrust and lower accuracy requirements. Two

control systems were considered essential to meet mission requirements in the

event of a single system failure.

BI_ Attitude Control System 1

[]_ Attitude Control System 2

Figure 5.2 Dual Attitude Control System for Percival Spacecraft.

5.6 Summary

In summary, the Percival spacecraft will utilize a scaled down Planetary

Observer with power supplied by an RTG and battery. Thermal control devices

include thermal blankets, surface coatings, heaters, and freon radiators. Percival

will use the Mars Balloon Relay System for reception of penetrator data and a

high gain antenna for penetrator and science instrument data transmission to

earth in real time. The onboard computer system will also have the ability to

store data for periods when Percival is not in its transmission zone. A low-gain

antenna will be used for backup and redundancy purposes. The spacecraft will

have completely autonomous guidance with ground based override capability.

Sun sensors, a star sensor, and a star tracker will be used for attitude

determination, while ring laser-gyroscopes will be used for rotation rate

determination. Percival will contain 24 hot and cold gas reaction control jets

capable of both low and high precision attitude control maneuvers.
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Finally, Table 5.1 contains the mass and power requirements of the

spacecraftstructureand systems. The total mass, 1262 kg, shownin Table 5.1
is inclusiveof a 10% safety factor. However,this spacecraftmass is 75 kg over

the mass budget for Percival. The power requirementof 299 W (this is a peak

value)doesfallwithinthe 300 W that canbe producedby the RTG.

Table 5.1 Mass and Power Requirements for Percival.

System

Penetrators

MBRS

VIMS

Gradiometer

GN&C

Communications

Computer System
RTG

Batteries

Propulsion
Thermal Control

Spacecraft Structure

Totals

Mass (kg)

75

6.8

21.7

49.5

85

12

7

5O

5

790

30

130

1262

Power Reqr. (W)

0

12.5

11.4/51.4

125

55

28

5

0

8

0

14

0

299
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6.0 Management Structure and Cost Summary

6.1 Management Structure

The organizational structure of the Percival mission design team is shown

in Figure 6.1. The project was managed by three upper management personnel:

the Team Leader, the Chief Engineer, and the Chief Administrator. The design

work was divided among four technical areas: Orbital and Propulsion System

Design, Surface Penetrator Design, Gravity Field Mapping and Science

Instrumentation, and Spacecraft Structure and Subsystems Design. Each

technical element was composed of three engineers and was headed by an

element leader. This organizational structure remained essentially the same

since the project start. Workload demands in the elements necessitated shifting

of engineering personnel between elements to accommodate increased or

reduced workloads.

I Team Leader IDavidReed

I Chief I
Engineer

stewart Lilley t Chief I
Administrator
MelindaSirman

I I I I
Gravity/ Penetrator Orbits/ Spacecraft/
Science Element Propulsion Systems
Element Element Element

Paul Bolton

Susan Elliott

James Nickelson

DavidReed
MelindaSirman

DougHamilton

SusanEUiott
MelindaSirman

Figure 6.1 Percival Design Team Organizational Structure

ArtemusShelton

Paul Bolton
James Nickelson

Integration efforts were conducted by the element leaders, headed by the

Chief Engineer. The task of building a spacecraft model was headed by the

Spacecraft Systems element lead. Personnel for this task were taken from all

elements. The task of creating a poster describing the mission was given to the

upper management personnel.
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The client for the Percival project asked that the Ares Industries

management use and evaluate MicrosoftProject ® software designed to help

create scheduling and critical path charts. Initial work was done to create Gantt

and PERT charts for the Percival project using MicrosoftProject ®.

Recommendations for use of this software product will be made to the contract

monitor.

6.2 Cost Summary

The cost for the preliminary design portion of the project has been broken

into personnel cost and material cost. A preliminary cost for the Percival Mission

to Mars launch and space segments was also calculated using parametric cost

estimating relationships (19). The following sections discuss each of these cost

areas.

6.2.1 Personnel Cost

Personnel cost have been tracked using weekly progress reports from

each design team member. The personnel cost for the design effort up to the

end of week 13 is shown in Figure 6.2. The total personnel cost is currently

$24,786. This is approximately $4,500 below the proposed cost expected at this

date. The discrepancy is due to an overestimate of the number of hours worked

weekly by the engineering personnel. Appendix C contains a detailed breakdown

of the personnel cost by team member.

6.2.2 Material Cost

The material costs used in the design effort came in on schedule with the

proposed material costs.

6.2.3 Preliminary Cost Estimate

The total cost of the Percival Mission to Mars is estimated to be $271

million (fiscal year 1990 constant dollars). Appendix C contains a summary of

the cost for each portion of the space segment of the mission (32). The total cost

is over the proposed "discovery class" mission philosophy cost of $150 million.

Ares Industries has concluded that the primary scientific goals of the Percival

mission (improved gravity mapping and penetrators) cannot be accomplished

within the current discovery class definition. The gravity gradiometer and
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penetrators are new technologies that are costly additions to the Percival Mission

to Mars.

100

Total Hours

Worked

2 3 4 5 6 7 8 9 10 11 12 13

Week

• Engineering

• Administration

Figure 6.2 Personnel Cost Status
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7.0 Conclusions

The main objectives of the Percival mission are to make gravity field

measurements at Mars that will augment and improve the Mars Observer gravity

mapping, to deploy penetrators to Mars as a precursor to future missions, and to

provide a platform for scientific instrumentation that was originally planned for

Mars Observer. These objectives were to be designed into the mission with a

low-cost "Discovery-class" design philosophy as the driver.

Each of the three scientific payloads on Percival was designed to meet the

desired objectives. The gravity gradiometer will provide more accurate data than

Mars Observer's gravity map will contain. The Doppler-shift measurement

capability, used as a backup to the gradiometer, will still augment the Mars

Observer gravity map, though the accuracy of the map will not be improved.

Three individual penetrators will be deployed to separate regions of Mars to

collect surface and sub-surface data. This data will help future mission designers

to chose the most feasible and most scientifically interesting landing sites on

Mars. The VlMS will be carried aboard Percival, fulfilling the scientific platform

objective.

The "Discovery-class" design philosophy specifies a low-cost, limited

mission, and available technology design. This design philosophy was violated in

several areas. Though Percival has fewer primary scientific packages than

previous spacecraft, such as the seven instruments on Mars Observer, three

primary scientific objectives may still be too high for a "Discovery-class" mission.

Spaceborne gradiometers can not be considered as available technology.

Gradiometers have been used in aircraft and on ships, but never in space. Much

disagreement about the obtainable accuracy of gradiometers exists. Ares

Industries has claimed only a moderate accuracy of 1 Eotvos is possible with

spaceborne gradiometers. Since this technology is untested, Doppler-shift

measurement capabilities will be designed into Percival with negligible additional

weight or cost.

The most prominent violation of the "Discovery-class" design philosophy

was the low-cost specification. The estimated design, development, and

production costs for the Percival mission is $270 million, compared to the

"Discovery-class" goal of $150 million. The scientific instruments and the RTG's

are major contributors to the cost estimate. The nature of the gradiometer and

the VlMS as single-use instruments makes them more expensive than other
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spacecraft instruments. Impact-hardened instruments on the penetrators will

cost considerably more than their standard counterparts. Also, the extremely

limited availability of RTG's makes them very expensive.

Though each of the scientific payloads was integrated into the Percival

spacecraft design, the total spacecraft mass is greater than the specified launch

system can support. The Delta 7925 with an additional upper stage allows for a

spacecraft dry mass of 460 kg at Mars. The current integrated spacecraft which

meets all of the mission objectives has an estimated mass of 535 kg. Ares

Industries has concluded that the primary scientific goals of the Percival mission

cannot be accomplished within the current "Discovery-class" definition and

cannot be accomplished with a Delta-class launch vehicle.



8.0 Recommendations

With the constraint of the Delta-class launch vehicle, Ares Industries was

not able to design the Percival mission to include all of the mission objectives

within the allowable weight. The spacecraft as designed is 75 kg over the mass

budget, which is the exact weight of the penetrator system. Although

undesirable, it would be possible to use the Delta vehicle to launch the Percival

mission without the penetrator system. At this time, the only alternative available

to launch the full Percival mission would be to choose a larger, more expensive

launch vehicle.

Technology must be developed further for the full Percival mission to be

launched using a Delta-class launch system. One modification that has been

examined is the modification of the GEM motors. The performance of the GEMs

would be increased by lengthening the motors. Other future alternatives might

be the use of upper stage motors with better performance characteristics than the

Star 48B's currently used.

Ares Industries has concluded that the current mission objectives cannot

be accomplished within the current definition of the "Discovery-class" design

philosophy. If the "Discovery-class" mission becomes a necessary constraint,

one of the three primary scientific packages should be chosen as the single,

primary mission of the Percival spacecraft. This choice will reduce both the

complexity and the cost of the mission.

To design the Percival Mission to Mars beyond the preliminary design

phase, detailed design must be done for all portions of the project. The following

issues must also be considered. For the propulsion system, the type of

propellant must be chosen to give a more precise estimate of the fuel mass

required. The penetrator system requires the accuracy of the penetrator

targeting to be determined in addition to the effects of winds on the entry

trajectory and attitude of the penetrator. Also, the susceptibility of the penetrator

structure to failure during an oblique impact must also be considered. The

feasibility of increasing the data rate of the Mars Balloon Relay should be

determined. For the spacecraft power system, the feasibility of using a Strontium

90 RTG should be further analyzed. The GN&C system of Percival should be

analyzed in more detail to determine if it satisfies the position and rate

determination and control requirements defined by the gradiometer.

49



9.0 References

1. Robinson, Dr. Paul, Assistant Chief Technologist for JPL, Phone interview on
10/06/92.

2. -..... ,"Delta", Delta Systems Program Office, Los Angeles, California, 1990.

3. -..... ,"Star Motor Data", in ASE 166M Class Notes, University of Texas at
Austin, 1986.

4. Bate, Roger R., Donald D. Mueller, and Jerry E. White, Fundamentals of
Astrodynamics, Dover Publications, Inc.: New York, 1971.

5. Beerer, Joseph G. and Ralph B. Roncoli, "Mars Observer Trajectory and Orbit
Design", Journal of Spacecraft and Rockets, Sept-Oct 1991, American Institute of
Aeronautics and Astronautics, Washington, D.C.

6. Fowler, Dr. Wallace, Professor Department of Aerospace Engineering and
Engineering Mechanics, University of Texas at Austin, Personal Interview.

7. Johnson, Mark E. "Mars Balloon and Surface Penetrator Design Study,"
Master's Thesis, University of Texas at Austin College of Engineering, May 1990.

8. Chicarro, A.F., et al, "MARSNET Report on the Assessment Study", ESA
Publication SC1(91), 6 January 1991.

9. Bettadpur, Srinivas, Department of Aerospace Engineering and Engineering
Mechanics (Graduate student), University of Texas at Austin, Personal Interview.

10. Lundberg, Professor Department of Aerospace Engineering and Engineering
Mechanics, University of Texas at Austin, Personal Interview.

11. McKinley, E.L., "Mars Observer Project: An Introduction", AIAA Joumal of
Spacecraft and Rockets, vol. 28, No. 5, 489-490, Sept.-Oct. 1991.

12. Sanso, F. and Rummel, R. Theory of Satellite Geodosy and Gravity Field
Determination - Notes compiled from a symposium, New York, 1988.

13. Griffin and French, "Space Vehicle Design", AIAA, Inc., 1991.

14. Blume, Bill, Mission Planner for Mars Observer, Jet Propulsion Laboratory,
Pasadena, CA, Phone interview.

15.- ..... ,Spacecraft Subsystems (Student Spacecraft Subsystems Descriptions),
Department of Aerospace Engineering and Engineering Mechanics, University of
Texas at Austin, January 1992.

16. CRC Handbook of Physics and Chemistry, 49th Edition, Chemical Rubber
Publishing Company: Cleveland, Ohio 1968.

5O



17. Cogdell, J. R., Foundations of Electrical Engineering, Prentice Hall:
Englewood Cliffs, New Jersey, 1990.

18. The 1989 ARRL Handbook, The American Radio Relay League, Newington,
Connecticut, 1988,

19. Wong, Robert, "Cost Modeling", in Space Mission Analysis and Design, ed.
J. Wertz and W. Larson, Kluwer Academic Publishers, The Netherlands,1991.

51



10.0 Bibliography

Bate, Roger R., Donald D. Mueller, and Jerry E. White, Fundamentals of
Astrodynamics, Dover Publications, Inc.: New York, 1971.

Bettadpur, Sirnivas, ASE Graduate student, University of Texas at Austin,
Personal Interview.

Beerer, Joseph G. and Ralph B. Roncoli, "Mars Observer Trajectory and Orbit
Design", Journal of Spacecraft and Rockets, Sept-Oct 1991, American Institute of
Aeronautics and Astronautics, Washington, D.C.

Blume, Bill, Mission Planner Mars Observer JPL, Phone interview.

Braun,R. "Aerodynamic Requirements of a Manned Mars Aerobraking
Transfer Vehicle", Journal of Spacecraft and Rockets, June 1988.

Burgess, Eric, Return to the Red Planet, Columbia University Press, New
York, 1990, p. 137.

Chicarro, A.F., et al, "MARSNET Report on the Assessment Study", ESA
Publication SC1(91), 6 January 1991.

Conolly, John, Lunar and Mars Exploration Office, Phone Interview.

Covault, Craig, "U.S. Satellite Launch to Renew Mars Exploration" in Aviation
Week and Space Technology, Aug. 17,1992, p. 42.

Dubrawsky, Ido, "Design of an Unmanned Robotic Mission to Mars", Master's
Thesis, University of Texas at Austin College of Engineering, May 1992.

Esposito, Pasquale and Duane Roth, "Mars Observer Orbit Determination
Analysis", Journal of Spacecraft and Rockets, American Institute of Aeronautics
and Astronautics, Washington, D.C., Sept-Oct 1991.

Fenlason et al.,"A Phobos Industrial Production and Supply Base", UT-Austin,
Dec. 8, 1986.

Fowler, Dr. Wallace, Professor ASE Department, University of Texas at
Austin, Personal Interview.

Griffin and French, "Space Vehicle Design", AIAA, Inc., 1991.

Joels, Kerry M., The Mars One Crew Manual, Ballantine Books, 1985.

52



Johnson, Mark E. "Mars Balloon and Surface Penetrator Design Study,"
Master's Thesis, University of Texas at Austin College of Engineering, May 1990.

Kaplan, Dave, Lunar and Mars Exploration Office, Phone Interview.

Lewis, John S., "The History of Mars," The NASA Mars Conference, American
Astronautical Society, 1988.

Lundberg, Dr. John, Professor ASE Department, University of Texas at
Austin, Personal Interview.

McKinley, E.L., "Mars Observer Project: An Introduction", AIAA Journal of
Spacecraft and Rockets, vol. 28, No. 5,489-490, Sept.-Oct. 1991.

Palocz, Suzanne, "Mars Observer Mission and Systems Overview", AIAA
Journal of Spacecraft and Rockets, Vol. 28, No. 5,491-497, Sept.-Oct. 1991.

Report of 90-Day Study on Human Exploration of the Moon and Mars, Task
force of NASA for the National Space Council, November 1989.

Robinson, Dr. Paul, Assistant Chief Technologist for JPL, Phone interview on
10/06/92.

Sanso, F. and Rummel, R. Theory of Satellite Geodosy and Gravity Field
Determination - Notes compiled from a symposium, New York, 1988.

U.S. Congress, Office of Technology Assessment, "Exploring the Moon and
Mars; Choices for the Nation," OTA-ISC-502, Washington, DC: U.S. Government
Printing Office, July 199.

53



APPENDICES



APPENDIX A

Trajectory Design Code and Resulting Data

Program to find Hohmann transfer opportunities

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DOUBLE PRECISION MUSUN
DIMENSION XE(3),XEDOT(3),XM(3),XMDOT(3),TEST1 (3),TEST2(3)
RTD=180.D0/PI0
AUTOM=1.49599D 11
MUSUN=1.32718D20

C
C Get range of launch dates to try
C

WRITE(6,*)'Possible launch dates from JD:'
READ(5,')UTCLA
WRITE(6,')9"o JD:'
READ(5,*)UTCLB

C
C If 0 inputfor second date, just look at firstdate
C

IF(UTCLB.EQ.0.D0)UTCLB=UTCLA
C
C Set up step value (1 day) and tolerances
C

TSTEP=I .DO
ANGTOL=0.5D0

C
C Start iteration
C
200 DO 10 UTCL=UTCLA, UTCLB,TSTEP

C
C Find Earth's position at current launch date
C

CALL SOLAR(XE,XEDOT, UTCL,3)
TESTI(1)=XE(1)
TESTI(2)=XE(2)
TESTI(3)=0.D0
RMAGI=ABV(TEST1)
DO 20 I=1,3
TEST1 (I)=TEST1 (lyRMAG1

20 CONTINUE
UTCA=UTCL

C
C Find Mercury's position at launch date
C

CALL SOLAR (XM,XM DOT, UTCA,4)
C
C Just look at projection on ecliptic, and begin propagating
C Mars' position fonNard by day to find when angle between
C Earth and Mars is 180 degrees.
C
500 TEST2(1)=XM(1)

A1



TEST2(2)=XM(2)
TEST2(3)=0.D0
RMAG2=ABV(TEST2)
DO 301=1,3
TEST2(I)=TEST2(I)/RMAG2

30 CONTINUE
C
C Find the angle between Earth and Mars
C

COSANG=DOTP(TEST1 ,TEST2)
DIFF=DACOS(COSANG)*RTD

C
C See if angle near 180
C

IF(DABS(180.D0-DABS(DIFF)).LE.ANGTOL) GOTO 100
C
C Increment arrival date
C

UTCA=UTCA+TSTEP
C
C Find Mars' positionat arrtval date
C

CALL SOLAR(XM,XMDOT,UTCA,4)
GOTO 500

C
C If found when Earth and Mars directly opposite each other,
C write out time it took
C
100 WRITE(6,*)TOF at launch date',UTCL,' =',UTCA-UTCL

WRITE(6,*)'Phase angle=',DIFF
C
C From positions, calculate Hohmann trajectory and TOF
C spacecraft would follow if on this trajectory.
C

RI=ABV(XE)'AUTOM
R2=ABV(XM)*AUTOM
AT=(R1 +R2)/2.D0
TOF=PI0* DSQRT(A'I'**3/M USUN)/86400.D0
WRITE(6,*)'Semi-major axis=',AT
WRITE(6,*)'Caiculated TOF=',TOF

C
10

C
CONTINUE

STOP
END

Program to calculate Hohmann/BPM trajectory details

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MUSUN,MUE,MUM,NMTOFT,KMTOFT
DIMENSION XE(3),XEDOT(3),XM(3),XMDOT(3)
OPEN(9,FILE='PLAN.DAT')
MUSUN=1.32718D20
MUE=3.98603D14
MUM=4o2828D13
RE=6378.D0
RM--3397.D0
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KMTOFT=3280.8D0
AUTOM=1,49599D11
RTD=180.D0/PI0

C
CGet inputs and write to output file
C

WRITE(6,*)'Julian date of launch:'
READ(5,')TLNCH
WRITE(9,*)'Julian date of launch:',TLNCH
WRITE(6,*)'Time of flight:'
READ(5,*)TOF
WR ITE(9,*)'Time of flight :',TOF

C
C Find positionof Earth at launchand Mars at arrival
C

TARR=TLNCH+TOF
CALL SOLAR(XE,XEDOT,TLNCH,3)
CALL SOLAR(XM,XM DOT,TARR,4)

C
C Calculate semi-major axis of Hohmann transfer
C

RSUNE=ABV(XE)*AUTOM
RSUNM=ABV(XM)*AUTOM
AT=(RSUNE+RSUNM)/2.D0
WRITE(6,*)'Semi-major axis of transfer:',AT
WRITE(9,*)'Semi-major axis of transfer:',AT

C
C Calculate hyperbolic excess velocity at Earth
C

VEARTH=ABV(XEDOT)*AUTOM/86400.
VINERE=DSQRT(MUSUN*((2.D0/RSUN E)-(1 .D0/AT)))
VINFE=VINERE-VEARTH
WRITE(6,*)_/-inf at Earth=',VINFE
WRITE(9,*)_/-inf at Earth=',VINFE

C
C Input altitude of orbit around Earth; then can determine
C delta-V for transfer insertion
C

WRITE(6,*)'Altitude of Earth parking orbit (km):'
READ(5,*)RNOTE
WRITE(9,*)'Altitude of Earth parking orbit (km):',RNOTE
RNOTE=(RNOTE+RE)*1000.D0
VNOTE=DSQRT(VINFE**2+(2.D0*M UE/RNOTE))
WRITE(6,*)'V-not at Earth=',VNOTE
WRITE(9,*)'V-not at Earth=',VNOTE

C
C Calculate departure geometry
C

CALL GEOM('Earth',RNOTE,VNOTE,VINFE,M UE)
C
C Calculate delta-V for transfer insertion
C

VCIRCE=DSQRT(MUE/RNOTE)
WRITE(6,*)_/-circ at Earth=',VCIRCE
WRITE(9,*)_/-circ at Earth=',VCIRCE
DVE=VNOTE-VCIRCE
WRITE(6,*)'Delta-V from LEO=',DVE
WRITE(6,')
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WRITE(9,*)'Delta-V from LEO=',DVE
WRITE(9,*)

C
C Calculate plane change angle for BPM at true anomaly of
C 90 deg., and delta-V
C

P=(RSUNE*VINERE)**?_/MUSUN
WRITE(6,*)'P=',P
WRITE(9,*)'P=',P
E=DSQRT(1 .D0-(P/AT))
WRITE(S,*)'E=',E
WRITE(9,*)'E=',E
VNIN E= DSQ RT(M US UN*((2. D0/P)-( 1.D0/AT)))
RMXY=DSQRT(XM(1)**2+XM(2)**2)
DINC=DABS(DATAN(XM(3)/RMXY))
WRITE(6,*)'Plane change required at 90 (deg):',DINC*RTD
WRITE(9,*)'Plane change required at 90 (deg):',DINC*RTD
DVPC=2.D0*VNINE*DSIN(DINC/2.D0)
WRITE(6,*)'Delta-V for plane change=',DVPC
WRITE(S,')
WRITE(9,*)'Delta-V for plane change=',DVPC
WRITE(9,*)

C
C Calculate hyperbolic excess velocity at Mars
C

VMARS=ABV(XM Do'r')*AUTOM/86400.
VINERM=DSQRT(M USUN'((2.D0/RSUNM)-(1 .D0/AT)))
VINFM=VINERM-VMARS
WRITE(6,*)_/-inf at Mars=',VINFM
WRITE(9,*)_/-inf at Mars=',VINFM

C
C Input altitude of final Mars orbit to determine
C delta-V necessary for insertion
C

WRITE(6,*)'Altitude of Mars final orbit (km):'
READ(5,*)RNOTM
WRITE(9,*)'Altitude of Mars final orbit (km):',RNOTM
RNOTM=(RNOTM+RM)*1000.D0

C
C Calculate pedod
C

PERMRS=2.D0*PI0*DSQRT(RNOTM**3/MUM)
WRITE(6,*)'Period of Mars orbit=',PERMRS/60.D0
WRITE(9,*)'Period of Mars orbit=',PERMRS/60.D0

C
C Calculate inclination for sun-synchronous orbit
C

oa EGAD= 1.05851 D-7
ORBINC=DACOS(-OM EGAD*2.D0/3.D0/0.001965D0°(RNOTM/1000.D0/RM)°*2 *

1 PERMRS/(2.D0*PI0))
WRITE(6,*)'lnclination of Mars orbit=',ORBINC*RTD
WRITE(9,*)'lnclination of Mars orbit=',ORBINC*RTD
VNOTM=DSQRT(VINFM**2+(2.D0*MUM/RNOTM))
WRITE(6,*)_/-not at Mars=',VNOTM
WRITE(9,*)_,/-not at Mars=',VNOTM

C
C Calculate arrival geometry
C
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CALLGEOM('Mars',RNOTM,VNOTM,VINFM,MUM)
C
CCalculatedelta-Vfororbitinsertion
C

VCIRCM=DSQRT(MUM/RNOTM)
WRITE(6,*)_/-clrcatMars=',VCIRCM
WRITE(9,*)'V-ciroat Mars=',VCIRCM
DVM=VNOTM-VCIRCM
WRITE(6,')'Delta-V for Mars orbit insertion=',DVM
WRITE(6, °)
WRITE(9,*)'Delta-V for Mars orbit insertion=',DVM
WRITE(9,°)

C
C Determine total delta-V, and delta-V required of spacecraft
C

DVTOT= DVE+DVPC+DVM
DVPER=DVPC+DVM
WRITE(6,*)'Total deita-V:',DVTOT
WRITE(6,*)'Total deita-V required of Percival:',DVPER
WRITE(S,*)
WRITE(9,*)_otal delta-V:',DVTOT
WRITE(9,*)'Total delta-V required of Percival:',DVPER
WRITE(9,*)

C
C Input specific impulse of spacecraft's engines to
C determine final mass ratio
C

WRITE(6,*)'Specific impulse of Peroivar's propulsionsystem:'
READ(5,*)SPIMP
WRITE(9,*)'Specific impulse of Percival"s propulsionsystem:'

1 ,SPIMP
RATMAS=EXP(DVPER/(SPIMP*9.81))
WRITE(6,*)'Final mass ratio=',RATMAS
WRITE(6,*)
WRITE(9,*)'Final mass ratio=',RATMAS
WRITE(9,*)
CLOSE(9)
STOP
END

C
C
C

SUBROUTINE GEOM(TITLE,RNOTE,VNOTE,VINFE,MU E)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MUE
CHARACTER*5 TITLE
RTD=180.D0/PI0

C
C Calculate eccentricity, true anomaly of asymptote, turning angle,
C semi-major axis, and distance from asymptote for escape hyperbola.
C

ECC=I .D0+(RNOTE*VINFE*°2)/M UE
THINF=DACOS(-1 oD0/ECC)
TRNANG=2.D0*DASIN(1 .D0/ECC)
A=-M UF__/(VINFE**2)
DELTA=(RNOTE°VNOTE)NINFE
WRITE(S,*)
WRITE(9,*)
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WRITE(6,*)'* ..... ,TITLE,' escape hyperbola*****'
WRITE(9,*) ...... ,TITLE,' escape hyperbola ......
WRITE(6,*)'Semi-major axis:',A
WRITE(9,*)'Semi-major axis:',A
WRITE(6,*)'Eccentricity:',ECC
WRITE(9,*)'Eccentricity:',ECC
WRITE(6,*)'Delta:',DELTA
WRITE(9,*)'Delta:',DELTA
WRITE(6,*)q'uming angle (deg):',TRNANG*RTD
WRITE(9,*)"ruming angle (deg):',TRNANG*RTD
WRITE(6,*)q'rue anomaly of asymptote (deg):',THINF*RTD
WRITE(9,*)'T'rue anomaly of asymptote (deg):',THINF*RTD
WRITE(6,*) .... *............ **'
WRITE(9,*)'**** ........... *****'
WRITE(6,*)
WRITE(9,*)
RETURN
END

Program to calculate groundtracks on Mars

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MUM
RMARS=3397.D0
MUM=4.2828D13
DTR=PI0/180. DO
OPEN(9,FILE='GROUND.DAT')

C
C Enter type of function to do
C
5 WRITE(6,*)'1) Full, 2) List, 3) Large Prog-VIMS, 4) Quit:'

WRITE(9,*)'1) Full, 2) List, 3) Large Prog-VIMS, 4) Quit:'
READ(5,*)ITYPE
IF(ITYPE.EQ.4)GOTO 99

C
C If full list:
C

IF(ITYPE.EQ.1)THEN
C
C Input altitude at which information desired
C

WRITE(6,*)'Altitude of orbit(km):'
WRITE(9,*)'AItitude of orblt(km):'
READ(5,*)ALT

C
C Calculate period
C

PER=2.D0*PI()'DSQRT(((ALT+RMARS)*1000.D0)**3/MUM)
WRITE(6,*)'Pedod=',PER/60.D0,' minutes'
WRITE(9,*)'Pedod=',PER/60.D0,' minutes'

C
C Caculate number of orbits per day
C

ORBS=88772.D0/PER
IORB=INT(ORBS)+I
WRITE(6,*)'Number of orbits per day:',ORBS,IORB
WRITE(9,*)'Number of orbits per day:',ORBS,IORB
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C
C Caculate swath angle VIMS has at this altitude
C

VIMS=0.115703948D0°ALT
WRITE(6,*)'Swath of VIMS (km):',VIMS
WRITE(9,*)'Swath of VIMS (km):',VIMS

C
C Caculate range of penetrator
C

PEN=2.D0°2.144506921 D0*ALT
WRITE(6,°)'Maximum range allowed from penetrator (km):',PEN
WRITE(9,*)'Maximum range allowed from penetrator (km):',PEN

C
C Caculate distance along equator between consecutive orbits
C

DORB=(0.0040553D0*PER)*DTR*RMARS
WRITE(6,*)'Distance groundtrack moves each orbit (km):',DORB
WRITE(9,*)'Distance groundtrack moves each orbit (km):',DORB

C
C Caculate distance along equator between passes on
C consecutive days
C

TIMDAY=DBLE(IORB)*PER
DANGLE=(0.0040553D0*TIMDAY)-360.D0
DGRN D=DANGLE*DTR*RMARS
WRITE(6,*)'Distance groundtrack moves west each day (km):',DGRND
WRITE(9,*)'Distance groundtrack moves west each day (km):',DGRND

C
C Caculate distance between passes of short-distance repeat cycle
C

GRNDS=DORB/DGRND
IGRND=-INT(GRNDS)+I
DVIMS=(DBLE(IGRND)°DGRND)-DORB
IF(DVIMS.GT.100.D0)DVIMS=DVIMS-DGRND
WRITE(6,*)"VIMS" distance (km):',DVIMS
WRITE(9,*)"VIMS" distance (km):',DVIMS

C REPEAT= DGRND/ABS(DVIMS)
C WRITE(6,*)'Number of days for complete mapping cycle:',REPEAT
C WRITE(9,*)'Number of days for complete mapping cycle:',REPEAT
C
C If lists of vital information for several altitudes desired:
C

ELSEIF(ITYPE.EQ.2)THEN
WRITE(6,*)'Starting altitude (kin):'
READ(5,*)ALTST
WRITE(6,*)'Final altitude (km):'
READ(5,*)ALTFN
DO 10 ALT=ALTST,ALTFN,1 .DO

PER=2.D0*PI0*DSQRT(((ALT+RMARS)*1000.D0)**3/M UM)
ORBS=88772.D0/PER
VIM S--0.115703948D0*ALT
PEN=2.D0*2.144506921 D0*ALT
DORB=(0.0040553D0* PER)* DTR* RMARS
IORB=INT(ORBS)+I
TIMDAY=DBLE(IORB)*PER
DANGLE=(0.0040553 D0*TIMDAY)-360.D0
DGRN D=DANGLE*DTR*RMARS
WRITE(6,*)' Altitude (km):',ALT
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WRITE(6,*)'Distancegroundtrackmoveseachorbit(km):',DORB
WRITE(6,*)'Distancegroundtrackmoveswesteachday(km):',DGRND

10 CONTINUE
C
CIf listsforseveralaltitudesdesiredinordertofindgood
Cshort-distancerepeatcycles
C

ELSEIF(ITYPE.EQ.3)THEN
WRITE(6,*)'Startingaltitude(km):'
READ(5,*)ALTST
WRITE(6,*)'Finalaltitude(km):'
READ(5,*)ALTFN
DO20ALT=ALTST,ALTFN,.1DO
PER=2.D0*PI0*DSQRT(((ALT+RMARS)*1000.D0)**3/MUM)
ORBS=88772.D0/PER
VIMS=0.115703948D0*ALT
PEN=2.D0*2.144506921D0*ALT
DORB=(0.0040553D0*PER)*DTR*RMARS
IORB=INT(ORBS)+I
TIMDAY=DBLE(IORB)*PER
DANGLE=(0.0040553D0*TIMDAY)-360.DO
DGRND=DANGLE*DTR*RMARS
GRNDS=DORB/DGRND
IGRND=-INT(GRNDS)+I
DVIMS=(DBLE(IGRND)*DGRND)-DORB
WRITE(6,*)'Affltude(km):',ALT
WRITE(6,*)'Distancegroundtrackmoves each orbit (km):',DORB
WRITE(6,*)'Distance groundtrackmoves west each day (km):',DGRND
WRITE(6,*)"_/IMS" distance (km):',DVIMS

20 CONTINUE
ENDIF
GOTO 5

99 STOP
END
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Hohmann Output Data

Julian date of launch:
Time of flight:
Semi-major axis of transfer:
V-inf at Earth=
Altitude of Earth parking orbit :
V-not at Earth=

*****Earth escape hyperbola*****

Semi-major axis:
Eccentricity:
Delta:
Turning angle :
True anomaly of asymptote :
*****_* **11_.1k**** *** *

2450416.00

254.00 days
1.8670514293D+011 km
2791.45700209158 km/s
185.0000 km
11369.344171054200 km/s

-5.115389147D+007 km
1.128299134458780
2.67304872468D+007
124.8213265086500 deg
152.4106632543250 deg

V-cim _ Earth=
Delta-V from LEO=

P=

E=

Plane change required at 90 (deg):
Delta-V for plane change=

V-inf at Mars=
Altitude of Mars final orbit (km):
Period of Mars orbit=
Inclination of Mars orbit=
V-not at Mars=

*****Mars escape hyperbola*****

Semi-major axis:
Eccentricity:
Delta:
Turning angle (deg):
True anomaly of asymptote (deg):
********************

7793.258454759390 km/s
3576.085716294780 km/s

1.78500852649D+011
0.209624658694674
0.529605136990626
257.5200606530690

-2800.80238948
179.40000
108.2265589
92.35772239
5638.6909074

-5459625.549319550
1.655063239720850
-7200156.011446760
74.3435304598782
127.1717652299390

V-circ at Mars=
Delta-V for Mars orbit insertion=

3460.51593878382
178.17496869507

Total delta-V:
Total delta-V required of Percival:

6011.78074564293
2435.69502934814

Specific impulse of Percival's propulsion system:
Final mass ratio=

289.900
2.35480331874
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Groundtrack Output Data

Altitude of orbit:
Period:

Number of orbits per day:
Swath of VlMS :

Maximum range allowed from penetrator :
Distance groundtrack moves each orbit :
Distance groundtrack moves west each day :
'VlMS' distance :

179.4 km
108.227 minutes
13.670
20.757 km
769.449 km
1561.280 km
513.9498 km
-19.4310 km
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APPENDIX B

Penetrator Emplacement and Stress Analysis Method

The following analysis was taken form Mars Balloon and Surface

penetrator Study by Mark E. Johnson. The equations and empirical data were

originally developed at Sandia National Laboratories. Given the dimensions

and mass of a penetrator, soil characterization, and an impact velocity, the

depth of penetration, the maximum accelerations, and the maximum stresses

present in the penetrator walls can be calculated. Equations are also given for

the calculation of critical stresses for Euler column buckling and local wall

crippling.

The equation used to predict the depth of penetration is as follows:

d, --o.ol17K,,s.No (V,- 30.5)

where dn is the penetration depth (m), Kn is the low-mass scaling coefficient,

Sn is the characteristic soil coefficient, Nn is the nose performance coefficient,

M/A is the mass-to-cross-sectional area ratio (kg/cm2), and Vn is the impact

velocity.

The subscripts allow for differing soil characteristics and different

penetrator mass and cross-sectional areas. Each "layer" calculation represents

a layer of homogeneous soil or a thickness through which the penetrator's

cross-sectional area and mass are the same. The soil will be assumed to be

homogenous for all calculations. Thus, each calculation represents a different

section or configuration of the penetrator.

Three penetration calculations are necessary for the fore and aft design

of the penetrator. The first determines the penetration of the penetrator before

the aft section separation. This calculation ensures that the depth of penetration

is enough to cause the fore and aft sections to separate (dn must be greater

than the length of the forebody). If dn is greater than the forebody length, the

initial penetration is set equal to the forebody length. The second calculation

determines the depth of the forebody after the aft section separates. The last
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calculation determines the depth of penetration of the aft section. The final

depth of penetration of the forebody is the sum of the first two depth

calculations.

The low-mass scaling coefficient is determined from the graph shown in

Figure B.I. The nose performance coefficients are determined from Table B.1.

Guidelines for the choice of soil coefficients are given in Table B.2. The shaded

region indicates the soil characteristics considered by the Percival project. The

data in these graphs and tables was empirically developed at Sandia National

Laboratories.

Figure B.1
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Table B.1 Nose Performance Coefficients, N

Nose Shape

Flat

Hemisphere

Cone

Tangent Ogive

Caliber Idia, in.)

0.5

1.0

2.0

3.0

1.4

2.0

2.4

3.0

3.5

N

0.56

0.65

0.82

1.08

1.33

0.82

0.92

1.00

1.11

1.19

Inverse Ogive 2.0 1.03

3.O 1.32

Step Cone 1.28

Biconic 3.0 1.31
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Table B.2 Characteristic Soil Coefficients, S

Coefficient

0.2- 1

1-2

iiiiiiiiiiiii!iiiii! ii! iii iiiiiiiiiiiiiiiiiTiii

iiiiiiiiiiiiTiiiiiii i!iiTiii 7!!iiiiii!iiiMiTii

8-12

10-15

20 - 30

40 - 50

100

Description

Massive medium to high-strength rock, with few fractures;

iConcrete, 2-5 ksi, reinforced.
i1

Silt or clay, frozen, saturated, very hard; Rock, weathered, low-

strength, fractured; Sea or freshwater ice more !ban !o !eetth!Ck_ .....

Fine sand, very loose, excluding topsoil; Silt or clay, moist, stiff,

medium dense, less than about 50% sand.

Topsoil, moist, loose with some clay or silt; Clay, moist, medium

stiff and dense, with some sand.

Topsoil, loose, moist, with humus material, mostly sand and silt,

soft, low shear strength. ,,

Topsoil, very loose, dry, sandy; Silt or clay. saturated, very soft,

low shear strength, high plasticity; Wet lateritic clays.

Snow, loose.

For each new calculation beyond the first, the new initial "impact" velocity

must be determined. This velocity can be found using the acceleration and

velocity equations shown below:

an --_

2gdn

where an is the deceleration over the penetration (m/s2), Vn is the impact

velocity for the previous layer (m/s), and dn is the penetration depth or

"thickness" of the layer (m). Experiments done at Sandia National Laboratories

have shown that the deceleration due to penetration is essentially a step
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function rather than an impulse function. Thus, the deceleration is considered

to be constant for each layer calculation. The new initial velocity is given by:

where Vn-1 is the initial velocity for the previous layer (m/s), an-1 is the

acceleration through the previous layer (m/s2), Tn-1 is the thickness of the

previous layer (m), Ln-1 is the length of the previous Penetrator section's nose

(m).

Stress Analysis

The following analysis examines the two primary expected failure modes

for a penetrator: Euler column buckling and local wall crippling. For each

failure mode, the highest stress experienced within the penetrator wall is used

for comparison. The following equation gives the maximum stress:

_ mmaxamax

(3"max Awallmin

where _max is the maximum stress (MPa), mmax is the largest mass that the

penetrator section must support (kg), amax is the largest acceleration that the

penetrator section experiences, and Awallmin is the minimum cross-sectional

area of the penetrator wall.

The critical stress for Euler column buckling is given by the following:

where ac is the critical stress (MPa), E is the Young's modulus for the material

(MPa), L is the longest column length (m), and r is the minimum radius of

gyration of the cross-section (m).

The critical stress for local wall crippling is a characteristic of the material

used. For titanium, the following equations were used to estimate the allowable

stress before onset of local wall crippling:
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Oo = 205 L/r< 10

oo=_-_.7(_) 10 _<L/r < 54

L/r >_54

where L and r are defined as above.
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Personnel Cost

APPENDIX C

Cost Summaries

Personel Cost: Pro_lress Report Summary I

David Reed

$25/hr

Stewart Lilley

$22/hr

Melinda Slrman

$17Jhr(2-8)$22_r(6- )

Paul Bolton

$17/nr

Susan Ellioll

$17/hr

Doug Hamilton

$17/hr

Jim Nicke)son

$22_r_2-e},$ t 7Yh¢($- )

Arlemus Shelton

$17/11r

Total Hours

David Reed

$25/hr

Stewarl Lilley

_22/hr
Melinda Sirman

$17/tlr(2- e)$22/hr(6-

Paui Boiton

_I 7/hr

Susan Elliotl

$17/hr

Doug Hamilton

$17/hr

Jim Nickelson

$22 fnr( 2 -6 ),$17/l_[e-

Artemus Shelton

$17/hr

Total Hours

I 1 I I ) I I
Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Adm Eng. Total Adm. Eng. Total Adm Eng. Total Adm. Eng. I Total Adm. Eng. )Total Adm. Eng. I Total

20 4 24 29 4 33 20 2 22 27 2 I 29 27 2 29 10 4 t4

0 I 0

15 5 20 6 12 18 6

0

2 2 6 6

0

5 8 7 7

0

10 10 10 10

0

6 6 12 12

0

10 9 19 6 9 15 6

0

5 5 8 8

0

94 109

12 18 6 12 18 6 12 18 8 2 10
0

15 15 12 12 3 10 13 4 8 12

0
3 3 12 12 12 12 15 15

0

8 8 5 5 15 15 7 7

0

12 12 12 12 12 12 12 12

0

0 6 6 5 5

0 =:,

12 12 4 4
0

96

12 18 20 0 20

12 t2 12 12

118 131

iTotal Co_mt (wk
Actual Pmposed

$3,775 $3,850

$2,244 $2,772

$1,080 $1,428

$969 $I ,428

$935 $1,428

$1_122 $1,428

$1 i920 $2,772

$901 $1,426

79 $12,946 $16,534

Week 8 Week 9 Week 10

Adm. Eng. Total Adm.l Eng. Total Adm.! Eng. ITotal Adm. En@ Total]._dm Eng. Total Adm. Eng Total

11 7 18 17 t 4 21 25 6 31 6 15 21 16 8 24 14 0 14
l

3 5 8 3 3 6 4 6 10 2 18 20 4 22 26 0 4

Week 11 Week 12 Week 13 Total Cost 1-13Week

2 10 12 10 15 25 10 5 15 7 3 10 10 12 22 5 0

Actual Proposed

$7,000 $7,150

4 $3,872 $5,148

5 $3,038 $3r804

0 $2,253 $2,652

0 $1,683 $2,652

.... 5 ..... $2 295 $2,652

2 $3,042 $3,996

S $1,598 $2,652

38 $24r781 $30_706

11 11 6.5 6.5 8 8 24 24 26 26 0

8 8 10 10 10 10 8 8 8 8 0

15 15 16 16 6 6 15 15 12 12 5

11 11 0 10 10 15 15 0 13 13 0 15 15 0 2

7 7 8 8 8 8 4 4 6 6 8

90 103 103 ! 115 139
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Preliminary Design Cost Estimate

Space Segment Cost: Parameter:

Gradiometer*:

VIMS:

Balloon Relay System:
Penetrators*:

Communications:

structure/Thermah

GN&C:

Power:

Modified Delta 7925:

Totals:

Enabling Tech.

Aperature (m)

Wt (kg)

Enabling Tech.

Wt (kg)

Wt (kg)

Dry Wt (kg)
EPS Wt x BOL

Prliminary Design Cost Estimat 

RDT&E Cost:

(SK)

169649.533

3355.89771

4691.86375

16490.9688

19743

7228.7449

221160.009

.=

Dev. RDT&E*Dev. TFU Cost:
Factor

0.1

0.1

1

0.2

Factor

16964.9533

335.589771

938.37275

0.2 3298.19376

0.3 5922.9

($K)

Prelimin_ Total
Cost Estimate ($K

= 50000

67860.3417 84825.29502

780.18277 1115.772541

= 50000
1082.40962 2020.78237

2698.53981 5996.733574

5966.68698 11889.58698
0.2 1445.74898 3358.50058 4804.249559

- 60000 60000

28905.7586 141746.661 270652.42
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